搭建两层GraphSAGE网络,其中sage1与sage2分别表示第一层与第二层,这里如果有需要可以搭建多层的GraphSage,注意保持输入链接出大小相互匹配即可。class GraphSAGE_NET(torch.nn.Module): def __init__(self, feature, hidden, classes): super(GraphSAGE_NET, self).__init__() self.sage1 = SAGECon...
3.2 头文件和配置文件 importmathimporttorchimportrandomimportpyhoconimportargparseimportnumpyasnpimporttorch.nnasnnimporttorch.nn.functionalasFfromsklearn.utilsimportshufflefromsklearn.metricsimportf1_scoreparser=argparse.ArgumentParser(description='pytorch version of GraphSAGE')parser.add_argument('--dataSet',ty...
PyG包含大量常用基准数据集,例如,所有Planetoid数据集(Cora、Citeseer、Pubmed),所有图分类数据集http://graphkernels.cs.tu-dortmund.de以及它们的清理版本、QM7和QM9数据集,以及一些3D网格/点云数据集,如FAUST、ModelNet10/40和ShapeNet。 数据集的初始化将自动下载其原始文件,并将其处理为前面描述的数据格式。比...
首先还是需要先指定优化器和损失函数,并设定一些参数用于记录训练过程中的信息,如Epochs、Batch size、学习率等。 # 初始化GraphSage并指定参数num_layers =2hidden_channels =256model = GraphSAGE(hidden_channels, num_layers).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.01) loss_func ...
GraphSAGE使用Sampler方法来聚合邻居信息。在Pytorch Geometric中,可以使用Various Sampling方法来实现Sampler。例如,使用ClusterData方法将图分成多个子图,然后对每个子图进行采样操作。 以下是ClusterData的使用示例: fromtorch_geometric.utils import degree, to_undirectedfromtorch_geometric.transforms import ClusterData ...
Pytorch实现GCN、GraphSAGE、GAT https://mp.weixin.qq.com/s?__biz=MzUyNzcyNzE0Mg==&mid=2247501404&idx=1&sn=b551b55065f621571e247ecbaae31c0b&chksm=fa79a915cd0e2003798505108a17860c4137fda3636c8fc3490f30a2841eb0e649785da83be6&mpshare=1&scene=23&srcid=0701EyzPemAObrrkw8YB3UWh&sharer_...
实现谱域图卷积网络(GCN)和其变种,如GraphSAGE和GAT,需要理解它们的基本原理和PyTorch中相关库的使用。首先,从安装PyTorch-geometric(pyg)开始,它是处理图数据操作的核心库。PyG包含丰富多样的基准数据集,如Planetoid、图分类数据集和3D图形数据,数据加载时会自动处理并提供索引访问。微批次(Mini-...
train.py master BranchesTags pytorch-graphsage/train.py/ Jump to Cannot retrieve contributors at this time executable file177 lines (140 sloc)5.45 KB RawBlame #!/usr/bin/env python """ train.py """ from__future__importdivision from__future__importprint_function...
graphsage pytorchversion ofhttps://github.com/williamleif/GraphSAGE There are also a handful of new features, including: scripts for preprocessing data attention-based aggregator sparse edge sampler (eg, don't use the dense 2D edgelist) richer, pluggable preprocessing classes ...
Hands-on Time Series Anomaly Detection using Autoencoders, with Python Data Science Here’s how to use Autoencoders to detect signals with anomalies in a few lines of… Piero Paialunga August 21, 2024 12 min read 3 AI Use Cases (That Are Not a Chatbot) ...