而就在今天上午,媒体semianalysis的Dylan Patel和Gerald Wong发表了一篇题为《GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE》的文章,曝光了GPT-4从模型架构、模型训练到成本的所有细节,GPT-4又被“开源”了?文章中详细介绍了GPT-4的架构、训练和推理的基础设施、参数量、训练数据集...
到今年年底,许多公司将拥有足够的计算资源来训练一个与GPT-4规模相当的模型。 专家权衡机制 MoE是一种在推理过程中减少参数数量的好方法,同时仍然增加参数数量,这对于每个训练标记来编码更多信息是必要的,因为获取足够高质量的标记非常困难。如果OpenAI真的试图达到最佳性能,他们实际上需要训练两倍数量的标记。 话虽如此...
5、数据集:GPT-4 的训练数据集包含约 13 万亿个 token。这些 token 是重复计算之后的结果,多个 epoch 中的 token 都计算在内。Epoch 数量:针对基于文本的数据进行了 2 个 epoch 的训练,而针对基于代码的数据进行了 4 个 epoch 的训练。此外,还有来自 ScaleAI 和内部的数百万行的指令微调数据。6、GPT-4...
但是放到今天,在2美元/每H100小时的条件下,预训练可以在大约8,192个H100上进行,只需要55天,费用为2150万美元。上图显示了一些已公开的先进模型各自的参数数量和token。图中的线是谷歌DeepMind的Chinchilla缩放观测值(平滑了较大的误差条),线上的每一点都显示了使用该参数和token数训练模型所需的理论FLOPS 不...
训练机器人,AI比人类更拿手!英伟达最新AI AgentEureka,用GPT-4生成奖励函数,结果教会机器人完成了三十多个复杂任务。比如,快速转个笔,打开抽屉和柜子、抛球和接球。尤其是转笔这个技能,要知道靠人类逐帧制作动画,也是非常困难的。最终,Eureka在超过80%的任务中都超越人类专家,让机器人平均性能提升到50%以上。...
OpenAI训练GPT-4的FLOPS约为2.15e25,在大约25000个A100上训练了90到100天,利用率在32%到36%之间。故障数量过多也是极低利用率的原因,这会导致需要重新从之前的检查点开始训练。 另一个原因是这么多GPU之间的all-reduce非常昂贵。 如果OpenAI云计算的成本是差不多1美元/每A100小时的话,那么在这样的条件下,仅这次...
训练成本:一次的训练的成本为6300万美元 OpenAI训练GPT-4的FLOPS约为2.15e25,在大约25000个A100上训练了90到100天,利用率在32%到36%之间。故障数量过多也是极低利用率的原因,这会导致需要重新从之前的检查点开始训练。 另一个原因是这么多GPU之间的all-reduce非常昂贵。
高效的炼丹:GPT-4 模型太大每次训练成本很高,但同时训练模型时很像炼丹需要做很多实验,如果这些实验都要在真实环境下跑一遍的话谁也承受不了。为此,OpenAI 搞了所谓的 predictable scaling,就是可以用万分之一的成本来预测各个实验的结果(loss 和 human eval)。这把大模型训练从碰运气的炼丹升级成了「半科学...
GPT-4背后有两个关键因素:数据和计算。数据是训练语言模型的原材料,计算是训练语言模型的动力。GPT-4使用了超过1000亿个词(约500TB)的文本数据进行预训练,这些数据来自于互联网上各种类型和领域的文本资源,例如维基百科、新闻、社交媒体、书籍、论文等等。这些数据覆盖了丰富和多样的知识和信息,为GPT-4提供了...
13万亿个token的GPT4,困于数据短缺 大模型就要没弹药了,训练数据成为大模型升级的最大拦路虎。 《纽约时报》报道,为了训练GPT4,OpenAI使用其旗下语音转文字模型Whisper挖掘了超100万小时的YouTube数据作为其训练模型。而另一端,社交媒体巨头Meta高层也在讨论收购出版社 Simon & Schuster来完成基础模型对高质量训练数据...