1 HMM可以用5个元素来描述 2 HMM的三个主要问题 3 GMM-HMM模型的超参(列出主要的,可能需要通过交叉验证,或建模迭代来优化) 三、GMM-HMM语音识别模型的类型 1 根据训练集是否提供“人工标注的状态序列”,学习算法分为有监督学习和无监督学习。 2 根据语音单位不同,状态集合元素分为音素或子音素。关于音素:英语...
GMM-HMM使用GMM描述状态到帧的生成关系。对于某个状态sj,其通过GMM产生第t个语音信号帧(通常表示为MFCC,Fbank特征向量),即状态sj对应K个多维高斯分布,则第t帧的出现概率(发射概率)为 b_j(o_t)=\sum_{k=1}^{K}c_{jk}N(o_t|\mu_{jk},\Sigma_{jk}) ...
HMM-GMM(Hidden Markov Model - Gaussian Mixture Model)是语音识别中的经典模型之一。它结合了隐马尔可夫模型(HMM)和高斯混合模型(GMM)的优点,用于建模语音信号的时间序列特性和观测值的概率分布。 原理 隐马尔可夫模型(HMM) 隐马尔可夫模型(HMM, Hidden Markov Model)是一种统计模型,用于描述一个系统通过一系列隐状...
模型选择与优化:根据实际应用场景选择合适的HMM和GMM模型,并通过调整模型参数和优化算法来提升模型性能。 后处理:在语音识别结果输出之前,进行适当的后处理操作,如语言模型平滑、文本纠错等,可以进一步提升识别结果的准确性和可读性。 结语 HMM和GMM作为传统语音识别技术的两大核心组件,在推动语音识别技术发展的过程中发挥...
二、HMM的每一个状态都对应有一个观察值,这个观察值可以是一个实数,也可以是个向量,且每个状态对应的观察值的维度应该相同。假设现在有一个单词的音频文件,首先需要将其进行采样得到数字信息(A/D转换),然后分帧进行MFCC特征提取,假设每一帧音频对应的MFCC特征长度为39,则每个音频文件就转换成了N个MFCC向量(不同...
1. 计算输入MFCC序列X属于每个GMM-HMM的概率,最大的概率即是预测得到的triphone三因子。 2. 计算X输入每一个GMM-HMM的概率时,同样先进行对齐alignment(确认X中哪些序列属于状态s1、s2、s3),穷举所有的对齐方式,然后概率相加。 下图是一个示例计算GMM-HMM产生X的概率,列了2个对齐,a、b、c是HMM的三个状态。
HMM在语音识别中的应用主要是通过解码过程实现的。解码过程包括使用Viterbi算法等动态规划方法,找到最可能的音素序列,从而实现语音识别。具体来说,给定一段语音信号,HMM会根据输入的声学特征,通过计算不同状态序列的概率,找到最可能的状态序列,即对应的文本序列。 3. HMM的实际应用 HMM在语音识别领域的应用非常广泛。例...
随着语音识别技术越来越热,声学模型的训练方法也越来越多,各种组合和变化也是层出不穷,而随着深度学习的兴起,使用了接近30年的语音识别声学模型HMM(隐马尔科夫模型)逐渐被DNN(深度神经网络)所替代,模型精度也有了突飞猛进的变化,其中声学模型模型结构经历了从经典的GMM-HMM,到DNN-HMM,再到DNN+CTC的转变,本文列出了...
基于孤立词的GMM-HMM语音识别系统 语音识别中GMM是一个对角的GMM,它的协方差为对角阵,这是因为在GMM-HMM语音识别中,一般使用MFCC特征,而MFCC特征各维特征是独立的,只需要对角阵就可以描述它,此外,对角GMM模型的参数量相对较少,所需的计算量也更少。
在GMM-HMMs的传统语音识别中,GMM决定了隐马尔科夫模型中状态与输入语音帧之间的符合情况,和HMM用来处理在时间轴上的声学可变性(自跳转)。训练HMM需要用到Forward-backward算法(Baum-Welch算法),本质上是一种EM算法。 图为部分的状态-时间篱笆网络,为方便理解下面前向、后向概率。