均值GM(1,1)模型是邓聚龙教授首次提出的灰色预测模型,也是目前影响最大、应用最为广泛的形式,这里介绍基于累加生成数列的均值GM(1,1)模型,简称EGM。 一、GM(1,1)模型建模原理 1. 对原始数据作一次累加 设原始灰色数据为x(0)(1),x(0)(2),...,x(0)(n),记为x(0)=(x...
灰色预测模型通过对原始数据进行处理,生成一个新的序列(称为“累加生成序列”),再对该序列进行建模和预测。最常用的灰色预测模型是GM(1,1)模型,第一个 1 表示该模型为一阶微分方程模型,第二个 1 表示该模型是单变量的。 2.1. 建模流程 2.2. 构建累加生成序列 所谓的累加生成,就是将同一序列中的数据逐次相加...
拓展知识:既然有GM(1,1)模型,自然有GM(2,1)、GM(1,2)模型等。其中GM(2,1)就代表利用一个变量的二阶微分方程来进行灰色预测。 本题的新序列与年份的函数图像接近指数函数或直线,是单调的变化过程,适合GM(1,1)模型; 如果画出的图像是非单调的摆动序列或饱和的S型序列,则可考虑GM(2,1)模型。 GM(1,1...
灰色预测是对既含有已知信息又含有不确定信息的系统进行预测,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。 灰色预测对原始数据进行生成处理来寻找系统变动的规律,并生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
# 灰色预测模型GM(2,1) def greyModel2(dataVec, predictLen): "Grey Model for exponential prediction" # dataVec = [1, 2, 3, 4, 5, 6] # predictLen = 5 import numpy as np import sympy as sy from scipy import io, integrate, linalg, signal x0 = np.array(dataVec, float) n = x0...
GM(1,1) 模型群中,新陈代谢模型是最理想的模型。这是因为任何一个灰色系统在发展过程中,随着时间的推移,将会不断地有一些随即扰动和驱动因素进入系统,使系统的发展相继地受其影响。用GM(1,1) 模型进行预测,精度较高的仅仅是原点数据(0)(n) 以后的1到2个数据,即预测时刻越远预测的意义越弱[3]。而新...
GM(1,1),表示模型是一阶微分方程,且只含一个变量的灰色模型。 1、GM(1,1)模型预测方法 (1)原始数据(参考列) (2)累加生成序列(Acumulated Generating Operator,1-AGO) 其中, 显然,数列x(1)比数列x(0)光滑,弱化噪声。 (3)生成均值数列 (进一步弱化噪声) ...
灰色预测模型中最基本的是一次拟合参数模型,即GM(1,1)它是通过对原始数据进行累加生成后,得到规律性较强的序列,再用指数曲线去拟合得到预测值,即累加之后属于指数增长型的数据适合用灰色预测。 2.案例分析 3.原理解析 4.MATLAB源码 %2021/12/6 %公众号:好玩的MATLAB clc;clear;close all %原数据 data=[72.03...