glmnet in r 标签: 杂七杂八 收藏 GLMNet在R语言中的简要解读与分析 GLMNet是一个广泛应用于机器学习领域的库,特别是在回归分析和神经网络建模方面。本文将对GLMNet进行简要解读和分析,以帮助读者更好地理解这个库的使用方法和优势。 安装和使用方法 首先,我们需要安装GLMNet库。可以使用以下命令进行安装: ...
问glmnet中的r错误:外部函数调用中的NA/NaN/InfENpython中的正无穷或负无穷,使用float("inf")或float...
(dat_s_rna),function(i){ x_name=colnames(dat_s_rna)[i] x=dat_s_rna[,x_name] fit=lm(y~x) pvalue=signif(anova(fit)["x",5],3) #univariant, pvalue at pos 2 ar2=signif(summary(fit)$adj.r.square,3) re<-c(y_name,x_name,pvalue,ar2) return(re) } ) d<-do.call(...
LASSO回归(见临床研究新风向,巧用LASSO回归构建属于你的心仪模型)。
I might have misinterpreted what you meant, but it's possible to utilize thesavefunction to store your R entity in a.RDatadocument. Afterwards, you can effortlessly employload(YourFile.RData)to retrieve the object(s) in your session. ...
The main function is to convert factors to dummy matrices via "one-hot" encoding. Having the 'train' and 'test' data present is useful if some factor levels are missing in either. Since a factor with k levels leads to a submatrix with 1/k entries zero, with large k the sparse=TRUE ...
filter(function, iterable) 把可迭代对象中的每一个元素交给前面的函数进行筛选. 函数返回True或者False AI检测代码解析 def func(): print("你好") def func2(): print("不好") def gn(fn): # fn是一个参数. 根据实参给的值的变化而变化
Noah Simon helped develop the 'coxnet' function. Jeffrey Wong and B. Narasimhan helped with the parallel option Maintainer: Trevor Hastiehastie@stanford.edu References Friedman, J., Hastie, T. and Tibshirani, R. (2008)Regularization Paths for Generalized Linear Models via Coordinate Descent,https:...
The standard R method for creating a model matrix out of a data frame uses themodel.framefunction, which has a major disadvantage when it comes to wide data. It generates atermsobject, which specifies how the original columns of data relate to the columns in the model matrix. This involves...
A function cva.glmnet to choose both the alpha and lambda parameters via cross-validation, following the approach described in the help page for cv.glmnet. Optionally does the cross-validation in parallel. Methods for plot, predict and coef for the above. You can install the development version...