6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。 较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上。 更长的序列长度: 相比 G...
ChatGLM-6B实现采用了PaLM的实现方式,不同于上面的公式: \begin{bmatrix} q_0 \\ \vdots \\ q_{d/2-1} \\ q_{d/2} \\ \vdots \\ q_{d-1}\end{bmatrix} \otimes \begin{bmatrix} \cos m\theta_0 \\ \vdots \\ \cos m\theta_{d/2-1} \\ \cos m\theta_0 \\ \vdots \...
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于General Language Model (GLM)架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双...
本文结合目前在中文应用场景中具有出色表现的开源预训练大模型 ChatGLM-6B,介绍如何通过对其开源 Prompt-tuning 代码进行极少量的修改,并结合第四代英特尔® 至强® 可扩展处理器[1]的全新内置 AI 加速引擎——英特尔® 高级矩阵扩展 (Intel® Advanced Matrix Extension,简称英特尔® AMX)及配套的软件工具...
清华系大模型 ChatGLM-6B 再升级!背后团队新发布了 ChatGLM2-6B 。在主要评估LLM模型中文能力的 C-Eval 榜单中,截至6月25日 ChatGLM2 模型以 71.1 的分数位居 Rank 0 ,ChatGLM2-6B 模型以 51.7 的分数位居 Rank 6,是榜单上排名最高的开源模型。CEval榜单,ChatGLM2暂时位居Rank 0,ChatGLM2-...
1、下载ChatGLM-6B代码 git clone https://github.com/THUDM/ChatGLM-6B.git 进入到ChatGLM-6B中,执行相应的安装命令 pip install gradio # 用于启动图形化界面 pip install -r requrement.txt 2、下载模型代码(ChatGLM-6B的模型代码在huggingface上托管:https://huggingface.co/THUDM/chatglm-6b) ...
chatglm-6b是一个基于GPT的单模态对话模型,它只能处理文本输入和输出,但是它的训练和推理速度比较快,而且性能较好,可以生成流畅和有趣的对话。 baichuan-7b是一个类似于LLaMA的大规模预训练语言模型,它可以处理多种语言和领域的文本,但是它还不支持对话任务,需要进一步做SFT微调来适应不同的对话场景和目标。
VisualGLM-6B模型简介 VisualGLM-6B是由语言模型ChatGLM-6B( ChatGLM-6B(ChatGLM-6B)详细信息 | 名称、简介、使用方法 | 数据学习 (DataLearner) )与图像模型BLP2-Qformer结合而得到的一个多模态大模型,二者结合后的参数为78亿(62亿+16亿)。VisualGLM-6B的特别之处在于它能够整合视觉和语言信息。可以...
这意味着开发者可以通过API调用,让模型执行特定任务或编写、解析简单的代码片段,从而将应用拓展到更为广泛的开发和智能辅助领域。 二、部署环境准备 在部署ChatGLM3-6B之前,我们需要准备相应的硬件和软件环境。硬件方面,由于ChatGLM3-6B需要较大的显存支持,因此建议选择RTX3090、RTX4090等高端显卡。软件方面,我们需要...
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中...