另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。一、解决问题 YOLOv5主干特征提取网络采用C3结构,带来较大的参数量,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,...
王建尧博士与AB大神在2022年七月初推出了最新力作 - YOLOv7,该算法在5FPS~160FPS范围内的速度和准确度都超过了所有已知的目标检测算法,像是基于 Transformer 的 SWIN-L-Cascade-Mask R-CNN、基于卷积的 ConvNeXt-XL,Cascade-Mask R-CNN、YOLO 系列的 YOLOv4, Scaled-YOLOv4, YOLOR, YOLOv5, YOLOX, PPYOL...
YOLOv5 是 one stage 的目标检测算法,该算法在 YOLOv4 的基础上添加了一些新的改进思路,使得其速度与精度都得到了极大的性能提升,具体包括:输入端的 Mosaic 数据增强、自适应锚框计算、自适应图片缩放操作、Focus 结构、CSP 结构、SPP 结构、FPN + PAN 结构、CIOU_Loss 等。 在YOLOv3、YOLOv4 中,训练不同的...
【工业部署二】PicoDet网络结构在YOLOv5-Lite上的复现 编程算法ghost 这篇博客仅对PicoDet的网络结构进行复现。PicoDet在一定程度上刷新了业界轻量级移动端模型的sota,这也是我比较感兴趣的地方。本文将PicoDet模型网络结构迁移到yolov5的平台,因为是anchor base的形式,在性能上与原生模型可能有一定的差异,以下是原生模...
YOLOv5/v8改进主干GhostNetV2系列:首发结合最新NIPS2022华为诺亚的GhostNetV2 架构:引入长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干,打造高效轻量级检测器
YOLOv5中修改网络结构的一般步骤: models/common.py:在common.py文件中,加入要修改的模块代码 models/yolo.py:在yolo.py文件内的parse_model函数里添加新模块的名称 models/new_model.yaml:在models文件夹下新建模块对应的.yaml文件 一、Shufflenetv2 [Cite]Ma, Ningning, et al. “Shufflenet v2: Practical guid...