王建尧博士与AB大神在2022年七月初推出了最新力作 - YOLOv7,该算法在5FPS~160FPS范围内的速度和准确度都超过了所有已知的目标检测算法,像是基于 Transformer 的 SWIN-L-Cascade-Mask R-CNN、基于卷积的 ConvNeXt-XL,Cascade-Mask R-CNN、YOLO 系列的 YOLOv4, Scaled-YOLOv4, YOLOR, YOLOv5, YOLOX, PPYOL...
王建尧博士与AB大神在2022年七月初推出了最新力作 - YOLOv7,该算法在5FPS~160FPS范围内的速度和准确度都超过了所有已知的目标检测算法,像是基于 Transformer 的 SWIN-L-Cascade-Mask R-CNN、基于卷积的 ConvNeXt-XL,Cascade-Mask R-CNN、YOLO 系列的 YOLOv4, Scaled-YOLOv4, YOLOR, YOLOv5, YOLOX, PPYOL...
由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行...
, 37 ms), GhostNetV2 achieves 75.3% top-1 accuracy, which is obviously GhostNet V1 with 74.5% top-1 accuracy. Table 3: Results of object detection on MS COCO dataset. YOLOv3 [26] is used as the detection head. BackboneResolutionBackbone FLOPs (M)AP AP50 AP75 APS APM APL MobileNet...
本文使用的YOLOv5版本为v6.1,对YOLOv5-6.x网络结构还不熟悉的同学们,可以移步至:【YOLOv5-6.x】网络模型&源码解析 另外,本文所使用的实验环境为1个GTX 1080 GPU,数据集为VOC2007,超参数为hyp.scratch-low.yaml,训练200个epoch,其他参数均为源码中默认设置的数值。
YOLOv7 王建尧博士与AB大神在2022年七月初推出了最新力作 - YOLOv7,该算法在5FPS~160FPS范围内的速度和准确度都超过了所有已知的目标检测算法,像是基于 Transformer 的 SWIN-L-Cascade-Mask R-CNN、基于卷积的 ConvNeXt-XL,Cascade-Mask R-CNN、YOLO 系列的 YOLOv4, Scaled-YOLOv4, YOLOR, YOLOv5, YOLO...