4.基于STL-VMD二次分解 + Informer-LSTM的并行预测模型 4.1 定义Informer-LSTM并行预测网络模型 4.2 设置参数,训练模型 50个epoch,MSE 为0.000879,STL-VMD二次分解 + Informer-LSTM并行预测效果显著,模型能够充分利用Informer的长时间依赖建模能力和LSTM的短期依赖捕捉能力征,收敛速度快,性能优越,预测精度高,适当调整模...
2 基于CNN-LSTM的回归预测模型 2.1 定义CNN-LSTM网络模型 2.2 设置参数,训练模型 50个epoch,MSE 极小,CNN-LSTM回归预测模型预测效果显著,模型能够充分提取数据特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。 注意调整参数: 可以适当增加CNN层数和每层通道数,微调学习率; 调整...
好似随着模型的无限增大,AGI(通用人工智能,也叫强人工智能)触手可及,国内的百度文心一言、阿里通义千问、华为盘古、智谱清言、百川智能、月之暗面;国外的谷歌 Gemini、Anthropic的Claude、OpenAI 的ChatGPT等大量的独角兽或者传统巨头入局大模型。
2.1 定义CNN-LSTM网络模型 2.2 设置参数,训练模型 50个epoch,MSE 为0.000311,CNN-LSTM多步预测模型预测效果显著,模型能够充分提取序列的时空特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。 注意调整参数: 可以适当增加CNN层数和每层通道数,微调学习率; 调整LSTM层数和每层神经...