关于ARMA模型残差的多变量GARCH过程(或方差矩阵动力学模型) 关于ARMA-GARCH过程残差的多变量模型(基于copula) 因此,这里将考虑不同的序列,作为不同模型的残差获得。我们还可以将这些残差标准化。 ARMA模型 ARMA-GARCH模型 多变量GARCH模型 可以考虑的第一个模型是协方差矩阵的多变量EWMA, 要波动性,请使用 隐含相关性...
和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列。直观的来说 ,后者是比前者“波动”更多且随机波动的序列,在一元或多元的情况下,构建Copula函数模型和GARCH模型是最好的选择。 多元GARCH家族中,种类非常多,需要自己多推导理解,选择最优模型。本文使用R软件对3家上市公司近十年的每周收益率为例建立模...
在GARCH-Copula模型拟合出的结果中,我们可以解释以下几个方面: 1. 边缘分布:GARCH-Copula模型中的边缘分布描述了每个金融资产收益率的分布情况。通过拟合边缘分布,我们可以得到每个资产的波动性、均值和方差等参数。这些参数可以用于描述资产收益率的分布特征,例如尖峰、厚尾等。 2. 条件相关性:GARCH-Copula模型中的cop...
在Garchcopula模型中,GARCH模型用于建模时间序列数据的波动性。GARCH模型是基于ARCH模型发展而来的,它考虑了时间序列数据的波动率是随时间变化的现象。GARCH模型通过通过对过去的波动率进行建模,来预测未来的波动率。在建模时,GARCH模型考虑了波动率的自回归效应和残差平方项的加权平均。这种建模方法更加准确地反映了金融市...
本文把基金所持股票看成是一个投资组合,引入Copula来描述多只股票间的非线性相关性,构建多元GARCH-EVT-Copula模型来度量开放式基金的风险,并与其他VaR估计方法的预测结果进行比较。其次是将VaR引入到基金业绩评价中,构造RAROC指标来评价基金业绩,检验该评价指标的可行性。
> copula_NP = function(i = 1,j = 2){+ n = nrow(uv)+ s = 0.3+ norm.cop < - normalCopula(0.5)+ norm.cop < - normalCopula(fitCopula(norm.cop,uv)@estimate)+ dc = function(x,y)dCopula(cbind(x,y),norm.cop)+ ylab = names(dat)[j],zlab =“copule Gaussienne”,ticktype ...
和宏观经济数据不同,金融市场上多为高频数据,比如股票收益率序列。直观的来说 ,后者是比前者“波动”更多且随机波动的序列,在一元或多元的情况下,构建Copula函数模型和GARCH模型是最好的选择。 多元GARCH家族中,种类非常多,需要自己多推导理解,选择最优模型。本文使用R软件对3家上市公司近十年的每周收益率为例建立模...
GARCH-EVT-Copula 模型 首先用GARCH族模型拟合单项资产收益率,并提取标准化残差以满足极值理论的假设前提,接着对标准化残差的上下尾部分采用EVT理论中的广义帕累托分布GPD拟合,中间部分采用高斯核函数来估计其经验累积分布函数,从而得到标准化残差的边缘分布函数 ﹔然后选取适当的Copula 函数,构造多元标准化残差间的相关...
1、#数据处理思路#1,原始数据为4组时间序列;#读取软件包library(fGarch)library(quantmod)library(ghyp)library(copula)#设置工作目录#读取数据data=read.csv(Data.csv)head(data)#PoundJpanUsdEur#1-0.016689192-0.006422036-0.0041613040.001084608#20.0000000000.0059939300.000000000-0.034008741#30.000000000-0.0068502730....
R语言多元Copula GARCH 模型时间序列预测 直观的来说 ,后者是比前者“波动”更多且随机波动的序列,在一元或多元的情况下,构建Copula函数模型和GARCH模型是最好的选择。 相关视频 多元GARCH家族中,种类非常多,需要自己多推导理解,选择最优模型。本文使用R软件对3家上市公司近十年的每周收益率为例建立模型。