该Prompt告知了LLM:如果需要使用function-calling能力,那么就从tools(tools是预定义的functions)中选取一个最匹配的函数;如果不需要,就用自然语言与用户交互,此时与正常的对话流程无异。输出的格式固定为json,方便解析。 由此,我们受到启发:只要LLM基座够强(能够严格遵循Prompt响应诉求),即使LLM本身不支持function-calling...
在OpenAI 发布Function calling之前,我们可能会议文本输入的方式,在Prompt中要求LLM格式化输出,或者通过LangChain框架提供的Parsers相关的抽象。现在,OpenAI 提供了Function calling用于将LLM的输出格式化成Function calling所需要的参数。 Function calling介绍 简单的说,Function calling就是基于(自定义)函数调用所需要的参数,...
这里首先先给出一个智谱大模型调用function calling 地案例,如下代码所示,在将自定义的API传入给大模型之前,需要编写tools方法,这个方法中包含了调用API的函数名称、函数功能、参数等。 fromzhipuaiimportZhipuAIimportjson,retools=[{"type":"function","function":{"name":"get_weather_forecast",# 函数名称"descr...
该Prompt告知了LLM:如果需要使用function-calling能力,那么就从tools(tools是预定义的functions)中选取一个最匹配的函数;如果不需要,就用自然语言与用户交互,此时与正常的对话流程无异。输出的格式固定为json,方便解析。 由此,我们受到启发:只要LLM基座够强(能够严格遵循Prompt响应诉求),即使LLM本身不支持function-calling...
Parallel Tool Calling: Exemplifies how to use parallel tool calling with a supporting model. 1. Basic Function Calling# This example shows how to use a single function with automatic tool choice. fromopenaiimportOpenAIclient=OpenAI(base_url="http://0.0.0.0:8000/v1",api_key="not-used")MODEL...
比如,谷歌的 Gemini API 最近也开始支持函数调用, Anthropic 也在将其整合到 Claude 中。函数调用(译者注:Function Calling,允许模型通过调用特定的函数来执行某些复杂任务。)已经成为大语言模型(LLMs)的关键功能之一,能够显著增强大模型应用能力。因此,学习这项技术是极其有意义的。
🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application. chat-preview.lobehub.com Resources Readme License MIT license Code of conduct Code of conduct Activity St...
比如,谷歌的 Gemini API 最近也开始支持函数调用, Anthropic 也在将其整合到 Claude 中。函数调用(译者注:Function Calling,允许模型通过调用特定的函数来执行某些复杂任务。)已经成为大语言模型(LLMs)的关键功能之一,能够显著增强大模型应用能力。因此,学习这项技术是极其有意义的。
1、什么是Function Calling? 在生成式AI的上下文中,函数调用通常指的是LLM在生成响应时,能够识别并执行特定的函数或API调用,以获取额外的信息或执行特定的任务。 函数调用增强了LLM的扩展性和实用性,使其能够跨越语言模型的边界,与数据库、Web服务等外部系统无缝交互,从而提供更加全面和实时的信息。
该Prompt告知了LLM:如果需要使用function-calling能力,那么就从tools(tools是预定义的functions)中选取一个最匹配的函数;如果不需要,就用自然语言与用户交互,此时与正常的对话流程无异。输出的格式固定为json,方便解析。 由此,我们受到启发:只要LLM基座够强(能够严格遵循Prompt响应诉求),即使LLM本身不支持function-calling...