在你的Python脚本或Jupyter笔记本中,使用以下代码导入load_dataset方法: ```python from datasets import load_dataset ``` 这一步将允许你使用load_dataset方法来加载数据集。 3. 调用load_dataset方法加载数据集 在你的代码中调用load_dataset方法,并传入你想要加载的数据集名称,例如: ```python dataset = load_...
importos os.environ["HF_ENDPOINT"]="https://hf-mirror.com"fromdatasetsimportload_dataset dataset=load_dataset(path='squad',split='train')print(dataset) 因为原网址是不可用的,如图 hf 原网址 上面修改的环境变量是在 datasets 库中的 config.py 文件中的变量,如下图: 环境变量...
from datasets import load_dataset , Dataset datasets = load_dataset('cail2018') # 导入数据 datasets_sample = datasets[ "exercise_contest_train" ].shuffle(seed= 42 ).select( range ( 1000 )) datasets_sample = datasets_sample.sort('punish_of_money') # 按照被罚金额排序,是从大到小的,这个排...
from datasets import load_dataset dataset = load_dataset("squad", split="train") dataset.features {'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None), 'context': Value(dtype='string', id=None...
from datasets import load_dataset指定下载源怎么做? 关注者1 被浏览3 关注问题写回答 邀请回答 好问题 添加评论 分享 暂时还没有回答,开始写第一个回答 下载知乎客户端 与世界分享知识、经验和见解 相关问题 如何做InSAR的像素偏移追踪(offset -tracking)? 4 个回答 帮助中心 知乎隐私保...
Currently one has to choose a different loader depending on how the dataset has been created. e.g. this won't work: $ git clone https://huggingface.co/datasets/severo/test-parquet $ python -c 'from datasets import load_dataset; ds=load_dataset("test-parquet"); \ ds.save_to_disk("my...
My own task or dataset (give details below) Reproduction fromdatasetsimportload_dataset,Features,Value,ClassLabelclass_names=["cmn","deu","rus","fra","eng","jpn","spa","ita","kor","vie","nld","epo","por","tur","heb","hun","ell","ind","ara","arz","fin","bul","yue",...
import tensorflow as tf from tensorflow import keras def load_dataset(): # Step0 准备数据集, 可以是自己动手丰衣足食, 也可以从 tf.keras.datasets 加载需要的数据集(获取到的是numpy数据) # 这里以 mnist 为例 (x, y), (x_test, y_test) = keras.datasets.mnist.load_data() ...
cudnn.benchmark =Trueprint("===> Loading datasets") train_set =DatasetFromHdf5("path_to_dataset.h5") training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True) print("===> Building model") ...
import pandas as pd df = pd.read_json(jsonl_path, lines=True) df.head() from datasets import Dataset dataset = Dataset.from_pandas(df) 加载后的dataset也能使用,但后续用dataset.map进行处理也会非常慢。 高效解决方案 一种方法是先将jsonl文件转换成arrow格式,然后使用load_from_disk进行加载: # ...