1 focal loss 1.1 原理 1.2 focal loss的有效性思考 1.3 优缺点与应用 损失函数系列 损失函数: 模型学习的指挥棒 损失函数: 常用的分类和回归损失 损失函数: 交叉熵损失详解 常用的损失函数虽然可以满足分类或者回归问题的普遍需要,但当对学习效果有更高要求的时候,可以改进损失函数,使得损失函数对模型学习的约束,...
Focal loss是最初由何恺明提出的,最初用于图像领域解决数据不平衡造成的模型性能问题。本文试图从交叉熵损失函数出发,分析数据不平衡问题,focal loss与交叉熵损失函数的对比,给出focal loss有效性的解释。 交叉熵损失函数 Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^) 其中p^ 为预测概率大小。
focal_loss=FocalLoss(gamma=2,alpha=0.25)# 初始化模型和优化器 model=Net()optimizer=optim.SGD(model.parameters(),lr=0.01)# 训练模型forinputs,targetsindataloader:optimizer.zero_grad()outputs=model(inputs)loss=focal_loss(outputs,targets)loss.backward()optimizer.step() 在上述代码中,我们首先定义了一...
focal loss公式介绍 focal loss公式为:$F L ( p t ) = - ( 1 - p t )^\gamma \log ( p t )$,其中$pt$表示样本属于正类的概率,$\gamma$是一个可调节的超参数。 这个公式的提出是为了解决样本不均衡问题,特别是在目标检测任务中。由于正负样本的不均衡,一些传统的损失函数(如交叉熵损失)可能会...
Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。 2. 损失函数形式 Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:
为了解决(1)解决样本的类别不平衡问题和(2)解决简单/困难样本不平衡问题,作者提出一种新的损失函数:focal loss。这个损失函数是在标准交叉熵损失基础上改进得到: 该focal loss函数曲线为: 其中,−log(pt)−log(pt)为初始交叉熵损失函数,αα为类别间(0-1二分类)的权重参数,(1−pt)γ(1−pt)γ为简单...
Focal Loss 是何凯明大神提出的一个新的损失函数,其基于交叉熵损失函数做了一些修改。Focal Loss源自ICCV2017的一篇论文:Best student paper——Focal Loss for Dense Object Detection。 论文下载链接为:Lin_Focal_Loss_for_ICCV_2017_paper.pdf。 Focal Loss的提出主要是解决机器视觉领域中的样本数量不均衡的问题,它...
常见的图像分割损失函数有交叉熵,dice系数,FocalLoss等。今天我将分享图像分割FocalLoss损失函数及Tensorflow版本的复现。 1、FocalLoss介绍 FocalLoss思想出自何凯明大神的论文《Focal Loss for Dense Object Detection》,主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。
总体上讲,Focal Loss是一个缓解分类问题中类别不平衡、难易样本不均衡的损失函数。首先看一下论文中的这张图: 解释: 横轴是ground truth类别对应的概率(经过sigmoid/softmax处理过的logits),纵轴是对应的loss值; 蓝色的线(gamma=0),就是原始交叉熵损失函数,可以明显看出ground truth的概率越大,loss越小,符合常识...
focal loss 公式focal loss公式 FocalLoss公式是一种用于减少高置信度误差分类问题的损失函数,它可用于图像分类,目标检测和语义分割等任务。这种损失函数可以避免网络将所有预测都归结为负面类别,从而导致过度拟合。Focal Loss公式如下: FL(p_t) = -α_t (1 - p_t)γlog(p_t) 其中,p_t是模型的预测概率,α...