首先,明确一下loss函数的输入: 一个pred,shape为(bs, num_classes),并且未经过softmax; 一个target,shape为(bs),也就是一个向量,并且未经过one_hot编码。 通过前面的公式可以得出,我们需要在loss实现是做三件事情: 找到当前batch内每个样本对应的类别标签,然后根据预先设置好的alpha值给每个样本分配类别权重 ...
时,Focal Loss就等于原来的交叉熵。 二、pytorch代码实现 """ 以二分类任务为例 """fromtorchimportnnimporttorchclassFocalLoss(nn.Module):def__init__(self,gama=1.5,alpha=0.25,weight=None,reduction="mean")->None:super().__init__()self.loss_fcn=torch.nn.CrossEntropyLoss(weight=weight,reduction...
, Focal loss 相当于 Cross Entropy loss。实际应用中一般取 。 另一种平衡版本的 focal loss, 在论文的实验中能获得更好的结果: pytorch 实现: https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/focal_loss.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.imp...
下面是基于PyTorch的Focal Loss代码实现: ```python import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=0.25): super(FocalLoss, self).__init__ self.gamma = gamma self.alpha = alpha def forward(self, inputs...
接下来以我的几行代码为例告诉大家如何在pytorch中使用focalloss 以下是我们搭建优化器的几个经典代码,损失函数使用交叉熵损失函数: model=mobilenet_v3_large(in_dim=3,num_classes=10)#搭建一个分类神经网络model=nn.DataParallel(model,device_ids=[0]).cuda()# 指定gpuoptimizer=torch.optim.Adam(model.paramet...
绘制pytorch的loss曲线 pytorch focal loss,对于二分类问题,使用softmax或者sigmoid,在实验结果上到底有没有区别(知乎上相关问题讨论还不少)。最近做的相关项目也用到了这一块,从结果上来说应该是没什么区别,但是在模型上还是存在一定差异性的(可以应用于多模型融合、
这是Focal loss在Pytorch中的实现。 classWeightedFocalLoss(nn.Module):"Non weighted version of Focal Loss"def__init__(self, alpha=.25, gamma=2):super(WeightedFocalLoss, self).__init__()self.alpha = torch.tensor([alpha,1-alpha])....
Focal Loss 的Pytorch 实现以及实验 Focal loss 是 文章Focal Loss for Dense Object Detection中提出对简单样本的进行decay的一种损失函数。是对标准的Cross Entropy Loss 的一种改进。 F L对于简单样本(p比较大)回应较小的loss。 如论文中的图1, 在p=0.6时, 标准的CE然后又较大的loss, 但是对于FL就有相对...
这是Focal loss在Pytorch中的实现。 代码语言:javascript 复制 classWeightedFocalLoss(nn.Module):"Non weighted version of Focal Loss"def__init__(self,alpha=.25,gamma=2):super(WeightedFocalLoss,self).__init__()self.alpha=torch.tensor([alpha,1-alpha]).cuda()self.gamma=gamma ...
详解Focal Loss以及PyTorch代码 原理 从17年被RetinaNet提出,Focal Loss 一直备受好评。由于其着重关注分类较差的样本的思想,Focal loss以简单的形式,一定程度解决了样本的难例挖掘,样本不均衡的问题。 代码 importtorchimporttorch.nnasnnimporttorch.nn.functionalasFfromtorch.autogradimportVariableclassFocalLoss(nn....