上面有说到 dice coefficient 是一种两个样本的相似性的度量函数,上式中,假设正样本 p 越大,dice 值越大,说明模型预测的越准,则应该 loss 值越小,因此 dice loss 的就变成了下式这也就是最终 dice loss 的样子。 为了能得到 focal loss 同样的功能,让 dice loss 集中关注预测不准的样本,可以与 focal lo...
上面有说到 dice coefficient 是一种两个样本的相似性的度量函数,上式中,假设正样本 p 越大,dice 值越大,说明模型预测的越准,则应该 loss 值越小,因此 dice loss 的就变成了下式这也就是最终 dice loss 的样子。 为了能得到 focal loss 同样的功能,让 dice loss 集中关注预测不准的样本,可以与 focal lo...
Our proposed loss function is a combination of BCE Loss, Focal Loss, and Dice loss. Each one of them contributes individually to improve performance further details of loss functions are mentioned below, (1) BCE Loss calculates probabilities and compare
不同的损失函数适用于不同的情况,其中focal loss和dice loss是近年来较为流行的损失函数。 1. Focal Loss Focal loss是针对分类任务的一种损失函数,它是在交叉熵损失函数的基础上提出的。交叉熵损失函数在训练过程中给予那些易于分类的样本较小的惩罚,而较难分类的样本则会得到更高的惩罚。然而,在某些情况下,...
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。
gamma负责降低简单样本的损失值, 以解决加总后负样本loss值很大 alpha调和正负样本的不平均,如果设置0.25, 那么就表示负样本为0.75, 对应公式 1-alpha 4 多分类 focal loss 以及 dice loss 的pytorch以及keras/tf实现 4.1 pytorch 下的多分类 focal loss 以及 dice loss实现 ...
4 MSELoss(平方损失函数) 5 DiceLoss(用于计算两个样本点的相似度的距,主要应用,语义分割等) 6 Focal Loss 7 Chamfer Distance(CD、倒角距离) 8 Earth Mover’s Distance (EMD、推土机距离) 9 Density-aware Chamfer Distance (DCD) 10 smooth L1 loss(faster RCNN 和 SSD 使用) 11 Iou Loss | Glou Los...
一、cross entropy loss 二、weighted loss 三、focal loss 四、dice soft loss 五、soft IoU loss 总结: 一、cross entropy loss 用于图像语义分割任务的最常用损失函数是像素级别的交叉熵损失,这种损失会逐个检查每个像素,将对每个像素类别的预测结果(概率分布向量)与我们的独热编码标签向量进行比较。
和Dice soft loss 一样,通过 IoU 计算损失也是使用预测的概率值: 其中C 表示总的类别数。 总结: 交叉熵损失把每个像素都当作一个独立样本进行预测,而 dice loss 和 iou loss 则以一种更“整体”的方式来看待最终的预测输出。 这两类损失是针对不同情况,各有优点和缺点,在实际应用中,可以同时使用这两类损失...
Focal Loss 就是一个解决分类问题中类别不平衡、分类难度差异的一个 loss,总之这个工作一片好评就是了。 看到这个 loss,开始感觉很神奇,感觉大有用途。因为在 NLP 中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这...