不同的损失函数适用于不同的情况,其中focal loss和dice loss是近年来较为流行的损失函数。 1. Focal Loss Focal loss是针对分类任务的一种损失函数,它是在交叉熵损失函数的基础上提出的。交叉熵损失函数在训练过程中给予那些易于分类的样本较小的惩罚,而较难分类的样本则会得到更高的惩罚。然而,在某些情况下,...
上面有说到 dice coefficient 是一种两个样本的相似性的度量函数,上式中,假设正样本 p 越大,dice 值越大,说明模型预测的越准,则应该 loss 值越小,因此 dice loss 的就变成了下式这也就是最终 dice loss 的样子。 为了能得到 focal loss 同样的功能,让 dice loss 集中关注预测不准的样本,可以与 focal lo...
3 NLLLoss(最大似然损失函数) 4 MSELoss(平方损失函数) 5 DiceLoss(用于计算两个样本点的相似度的距,主要应用,语义分割等) 6 Focal Loss 7 Chamfer Distance(CD、倒角距离) 8 Earth Mover’s Distance (EMD、推土机距离) 9 Density-aware Chamfer Distance (DCD) 10 smooth L1 loss(faster RCNN 和 SSD ...
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。 何为预测不准的样本?比如正样本的预测值小于...
refinenet语义分割 语义分割focal loss 在语义分割任务中,根据数据的分布情况可选择不同的损失函数对网络输出和标签进行数值运算,以达到较优的训练效果。特别,在数据样本不均衡以及样本难易程度不同时,选择FocalLoss和DiceLoss往往能起到事半功倍的效果。本博客针对CrossEntropy、FocalLoss和DiceLoss三类损失函数进行了如下...
一、交叉熵loss 二、Focal loss 三、Dice损失函数 四、IOU损失 五、TverskyLoss 总结 前言 在实际训练分割网络任务过程中,损失函数的选择尤为重要。对于语义分割而言,极有可能存在着正负样本不均衡,或者说类别不平衡的问题,因此选择一个合适的损失函数对于模型收敛以及准确预测有着至关重要的作用。
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。
和Dice soft loss 一样,通过 IoU 计算损失也是使用预测的概率值: 其中C 表示总的类别数。 总结: 交叉熵损失把每个像素都当作一个独立样本进行预测,而 dice loss 和 iou loss 则以一种更“整体”的方式来看待最终的预测输出。 这两类损失是针对不同情况,各有优点和缺点,在实际应用中,可以同时使用这两类损失...
常见的图像分割损失函数有交叉熵,dice系数,FocalLoss等。今天我将分享图像分割FocalLoss损失函数及Tensorflow版本的复现。 1、FocalLoss介绍 FocalLoss思想出自何凯明大神的论文《Focal Loss for Dense Object Detection》,主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。
FocalLoss和DiceLoss思想比较接近,都是为了减少模型对容易样本的关注而进行的loss优化,而GHMLoss除了对容易样本降权,还实现了对特别困难样本的轻微降权,因为特别困难的样本可以认为是离群…