上面有说到 dice coefficient 是一种两个样本的相似性的度量函数,上式中,假设正样本 p 越大,dice 值越大,说明模型预测的越准,则应该 loss 值越小,因此 dice loss 的就变成了下式这也就是最终 dice loss 的样子。 为了能得到 focal loss 同样的功能,让 dice loss 集中关注预测不准的样本,可以与 focal lo...
2、FocalLoss公式推导 在github上已经可以找到很多FocalLoss的实现,如下二分类的FocalLoss实现。实现其实不是很难,但是在实际训练时会出现NAN的现象。 下面将简单推导一下FocalLoss函数在二分类时的函数表达式。 FocalLoss函数可以表示如下公式所示: 假设网络的最后输出采用逻辑回归函数sigmod,对于二分类问题(0和1),预测...
交叉熵损失、dice损失、focal损失、iou损失取取值范围 交叉熵损失(Cross-Entropy Loss)。 取值范围:[0, +∞) 解释:在分类问题里,要是预测结果和真实标签完全相符,交叉熵损失就是 0,这是能达到的最小损失值。而一旦预测结果和真实标签差异越来越大,交叉熵损失就会不断增大,趋向于正无穷。举个例子,在二分类问题...
损失函数是机器学习中十分重要的概念,它用于衡量模型在预测结果时的准确性。不同的损失函数适用于不同的情况,其中focal loss和dice loss是近年来较为流行的损失函数。1. Focal Loss Focal loss是针对分类任务的一种损失函数,它是在交叉熵损失函数的基础上提出的。交叉熵损失函数在训练过程中给予那些易于分类的样本...
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。
4.1 pytorch 下的多分类 focal loss 以及 dice loss实现 dice loss class DiceLoss(nn.Module): def__init__(self):super(DiceLoss, self).__init__() defforward(self, input, target): N = target.size(0) smooth =1input_flat = input.view(N, -1) ...
一、交叉熵loss 二、Focal loss 三、Dice损失函数 四、IOU损失 五、TverskyLoss 总结 前言 在实际训练分割网络任务过程中,损失函数的选择尤为重要。对于语义分割而言,极有可能存在着正负样本不均衡,或者说类别不平衡的问题,因此选择一个合适的损失函数对于模型收敛以及准确预测有着至关重要的作用。
refinenet语义分割 语义分割focal loss 在语义分割任务中,根据数据的分布情况可选择不同的损失函数对网络输出和标签进行数值运算,以达到较优的训练效果。特别,在数据样本不均衡以及样本难易程度不同时,选择FocalLoss和DiceLoss往往能起到事半功倍的效果。本博客针对CrossEntropy、FocalLoss和DiceLoss三类损失函数进行了如下...
3 NLLLoss(最大似然损失函数) 4 MSELoss(平方损失函数) 5 DiceLoss(用于计算两个样本点的相似度的距,主要应用,语义分割等) 6 Focal Loss 7 Chamfer Distance(CD、倒角距离) 8 Earth Mover’s Distance (EMD、推土机距离) 9 Density-aware Chamfer Distance (DCD) 10 smooth L1 loss(faster RCNN 和 SSD ...