Lovasz-Softmax Loss:对Jaccard进行扩展,表现更好 10.BCE Loss + Dice Loss BCE Loss + Dice Loss:将BCE Loss和Dice Loss进行组合,在数据较为均衡的情况下有所改善,但是再数据极度不均衡的情况下交叉熵会在迭代几个Epoch之后远远小于Dice Loss,这个组合Loss会退化为Dice Loss 11.Focal Loss + Dice Loss Focal...
上面有说到 dice coefficient 是一种两个样本的相似性的度量函数,上式中,假设正样本 p 越大,dice 值越大,说明模型预测的越准,则应该 loss 值越小,因此 dice loss 的就变成了下式这也就是最终 dice loss 的样子。 为了能得到 focal loss 同样的功能,让 dice loss 集中关注预测不准的样本,可以与 focal lo...
Focal Dice Loss:结合了Focal Loss和Dice Loss的特点,用于解决医学图像分割等问题。Dice Loss在处理类别不平衡时效果较好,而Focal Loss可以更好地处理难易样本。Focal Dice Loss结合了两者的优势,并在图像分割任务中取得了较好的效果。 综上所述,虽然Focal Loss在解决类别不平衡问题上具有一定的优势,但也存在一些缺点。
4 多分类 focal loss 以及 dice loss 的pytorch以及keras/tf实现 4.1 pytorch 下的多分类 focal loss 以及 dice loss实现 dice loss class DiceLoss(nn.Module): def__init__(self):super(DiceLoss, self).__init__() defforward(self, input, target): N = target.size(0) smooth =1input_flat = ...
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。
不同的损失函数适用于不同的情况,其中focal loss和dice loss是近年来较为流行的损失函数。 1. Focal Loss Focal loss是针对分类任务的一种损失函数,它是在交叉熵损失函数的基础上提出的。交叉熵损失函数在训练过程中给予那些易于分类的样本较小的惩罚,而较难分类的样本则会得到更高的惩罚。然而,在某些情况下,...
Our proposed loss function is a combination of BCE Loss, Focal Loss, and Dice loss. Each one of them contributes individually to improve performance further details of loss functions are mentioned below, (1) BCE Loss calculates probabilities and compare
重加权主要指的是在 loss 计算阶段,通过设计 loss,调整类别的权值对 loss 的贡献。比较经典的 loss 改进应该是 Focal Loss, GHM Loss, Dice Loss。 2.1 Focal Loss Focal Loss 是一种解决不平衡问题的经典 loss,基本思想就是把注意力集中于那些预测不准的样本上。
Dice Loss 来自《Dice Loss for Data-imbalanced NLP Tasks》这篇论文,阐述在 NLP 的场景中,这种类别数据不均衡的问题也是十分常见,比如机器阅读理解machine reading comprehension(MRC),与上述论文表明的观点大致相同: 负样本数量远超过正样本,导致容易的负样本会主导了模型的训练; ...
Focal Loss 就是一个解决分类问题中类别不平衡、分类难度差异的一个 loss,总之这个工作一片好评就是了。 看到这个 loss,开始感觉很神奇,感觉大有用途。因为在 NLP 中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这...