这意味着float64可以存储更大的数值和更小的数值,并且具有更高的精确度。 在深度学习中,浮点数的数据类型对模型的训练和推理过程有一定的影响。一般来说,使用float32可以在保证一定精度的情况下减少内存占用,从而提高计算效率。因此,当模型参数和输入数据较大时,使用float32可以更好地平衡计算速度和内存消耗。而对于...