class MyJdbcSink(sql:String ) extends RichSinkFunction[Array[Any]] { val driver="com.mysql.jdbc.Driver" val url="jdbc:mysql://localhost:3306/sensor?useSSL=false" val username="root" val password="123456" val maxActive="20" var connection:Connection=null; //创建连接 override def open(par...
public void eval(String s){ JSONArray jsonArray =JSONArray.parseArray(s); for(int i =0; i < jsonArray.size(); i++){ JSONObject jsonObject = jsonArray.getJSONObject(i); String type = jsonObject.getString("type"); String value = jsonObject.getString("value"); collector.collect(Row...
'scan.startup.mode' = 'latest-offset', -- 读取数据的位置 'format' = 'json', -- 数据源格式为 json 'json.fail-on-missing-field' = 'true', -- 字段丢失任务不失败 'json.ignore-parse-errors' = 'false' -- 解析失败跳过 ) 解析SQL select funcName, doublemap['inner_map']['key'], c...
请注意,Flink 默认的 json 格式不支持直接解析 JSON 数组类型的消息。如果消息格式是 JSON 数组,可能需要实现自定义的 Deserialization schema,或者流水线的早期阶段通过 Flink 的 DataStream API 进行一些预处理,将 JSON 数组解析为独立的 JSON 对象以供 SQL 查询。 如果要处理 JSON 数组,可以考虑将 Flink SQL 与 ...
在Flink 1.10 的 Table API 和 SQL 中,表支持的格式有四种: CSV Format JSON Format Apache Avro Format Old CSV Format 官网地址如下:https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/table/connect.html#table-formats 我用JSON Format 比较多,也有嵌套的JSON 数据需要解析,大概描述一下。
"'connector.bulk-flush.max-actions' = '1',\n" + "'format.type' = 'json'," "'update-mode' = 'append' )"; tableEnv.sqlUpdate(sinkDDL); Table table = tableEnv.sqlQuery("select * from test_es "); tableEnv.toRetractStream(table, Row.class).print(); ...
上述结构是典型的嵌套 JSON ,其中 JSON 数组作为 JSON 对象中的一个字段。这种格式常用于存储列表或集合类型的数据,例如用户列表、商品列表、交易记录等。 使用Flink SQL 解析嵌套 JSON 的步骤如下: 创建Kafka 数据源表,指定 JSON 格式的反序列化器 CREATE TABLE kafka_source ( ...
编辑Flink SQL语句 SQL说明:创建两张kafka流表,起作用为从kafka源端读取cdl对应topic,解析出需要的字段。并将结果写入另外一个kafka topic Json 中的每个 {} 都需要用 Row 类型来表示 Json 中的每个 [] 都需要用 Arrary 类型来表示 数组的下标是从 1 开始的不是 0 如下面 SQL 中的schema.fields[1].type...
Flink SQL没有直接支持将JSON字符串解析为数组的内置函数。但是,你可以使用JSON_TABLE函数将JSON字符串转换为表,然后使用ARRAY函数将表中的数据转换为数组。以下是一个示例: SELECT ARRAY(c) as result FROM JSON_TABLE('{"a":[{"c":"c1"},{"c":"c2"}]}' COLUMNS (c STRING)) 这将返回一个包含数组...