max_input_length=896, ipu_config=ipu_config, ) flan_t5.model.ipu_config.executable_cache_dir = executable_cache_dir 现在,让我们问它一些随机问题: questions = [ "Solve the following equation for x: x^2 - 9 = 0", "At what temperature does nitrogen freeze?", "In order to r...
Prompt length: 12Max input length: 500 现在我们知道,模型支持的最大输入文档长度为 500。除了输入之外,我们还需要知道最大“目标”序列长度,我们可以通过遍历数据集中的摘要长度来得到。(代码需要运行几分钟)from datasets import concatenate_datasetsimport numpy as np# The maximum total input sequence length ...
tokenized_inputs = concatenate_datasets([dataset["train"], dataset["test"]]).map(lambdax: tokenizer(x[text_column], truncation=True), batched=True, remove_columns=[text_column, summary_column]) max_source_length =max([len(x)forxintokenized_inputs["input_ids"]]) max_source_length =min...
sequences shorter will be padded.tokenized_inputs = concatenate_datasets([dataset["train"], dataset["test"]]).map(lambdax: tokenizer(x[text_column], truncation=True), batched=True, remove_columns=[text_column, summary_column])max_source_length = max([len...
prompt_length = len(tokenizer(prompt_template.format(input=""))["input_ids"]) max_sample_length = tokenizer.model_max_length - prompt_length print(f"Prompt length: {prompt_length}") print(f"Max input length: {max_sample_length}") # Prompt length: 12 # Max input length: 500 Prompt l...
Max input length: 500 现在我们知道,模型支持的最大输入文档长度为 500。除了输入之外,我们还需要知道最大“目标”序列长度,我们可以通过遍历数据集中的摘要长度来得到。(代码需要运行几分钟) from datasets import concatenate_datasetsimport numpy as np# The maximum total input sequence length after tokenization....
model_name="google/flan-t5-small"tokenizer=T5Tokenizer.from_pretrained(model_name)model=T5ForConditionalGeneration.from_pretrained(model_name)defsummarize_text(text):input_text=f"Summarize: {text}"inputs=tokenizer(input_text,return_tensors="pt")outputs=model.generate(**inputs,max_length=50,early...
prompt_length=len(tokenizer(prompt_template.format(input=""))["input_ids"])max_sample_length=tokenizer.model_max_length-prompt_lengthprint(f"Prompt length:{prompt_length}")print(f"Max input length:{max_sample_length}")# Prompt length:12# Max input length:500Prompt length:12Max input length...
prompt_length=len(tokenizer(prompt_template.format(input=""))["input_ids"])max_sample_length=tokenizer.model_max_length-prompt_lengthprint(f"Prompt length:{prompt_length}")print(f"Max input length:{max_sample_length}")# Prompt length:12# Max input length:500Prompt length:12Max input length...
二、Flan-T5环境搭建 在使用Flan-T5之前,你需要搭建相应的运行环境。以下是一些建议的步骤: 安装Python:确保你的系统已安装Python,并配置好环境变量。建议使用Python 3.7或更高版本。 安装PyTorch:Flan-T5基于PyTorch框架实现,因此你需要安装PyTorch及其相关依赖。你可以访问PyTorch官网查看安装指南。 安装Transformers库:Tr...