在相似日选择和 VMD-EMD-FFT 输入的情况下,实验在模型中设置有或没有这些方法。7个实验的训练、验证和测试结果如表15所示。 表15 GRU、LSTM和biLSTM预测结果对比 参考表15中的结果,三对实验(1 vs. 5, 2 vs. 6, 4 vs. 7)中有和没有 VMD-EMD-FFT 的比较表明,VMD-EMD-FFT 可以提高预测模型的性能,...
Building upon this preprocessing method, the FFT-LSTM forecasting model, which combines the strengths of FFT and Long Short-Term Memory (LSTM) recurrent neural networks, was enhanced. The simulation of the improved FFT-LSTM model was carried out on two time series with distinct characteristics. ...
Learn more OK, Got it. Something went wrong and this page crashed! If the issue persists, it's likely a problem on our side. Unexpected end of JSON inputkeyboard_arrow_upcontent_copySyntaxError: Unexpected end of JSON inputRefresh
韦小桂目前担任广西钢大建设工程有限公司法定代表人,同时担任广西钢大建设工程有限公司执行董事,经理,南宁市康桥医药有限公司监事;二、韦小桂投资情况:目前韦小桂投资广西钢大建设工程有限公司最终收益股份为49%,投资南宁市康桥医药有限公司最终收益股份为47%;三、韦小桂的商业合作伙伴:基于公开数据展示,韦小桂目前有3个...
高晓明目前担任苏州显华建设工程有限公司法定代表人,同时担任苏州显华建设工程有限公司执行董事;二、高晓明投资情况:高晓明目前是苏州显华建设工程有限公司直接控股股东,持股比例为95%;目前高晓明投资苏州显华建设工程有限公司最终收益股份为95%;三、高晓明的商业合作伙伴:基于公开数据展示,高晓明与李斌为商业合作伙伴。
Based on the developed preprocessing method using the feature extraction–extension scheme, we improved the FFT-LSTM time-series forecasting model, which enhances the accuracy of long-term forecasting tasks. We conducted simulations of the enhanced FFT-LSTM time-series forecasting model on two time se...
The proposed method analyzed characteristics of accelerometer data in frequency domain by using FFT. The proposed method achieves 97.27% accuracy and 97.27% F1-score for classifying types of punches (e.g., left hook, left jab, right cross, and right hook) by using LSTM. The proposed method ...
Results: Upon analyzing a public test dataset, the top-performing features in the fully CNN nested LSTM model for epilepsy classification are FFT features among three types of features. Notably, all conducted experiments yielded high accuracy rates, with values exceeding 96% ...
Hourly Wind Speed Forecasting Using FFT-Encoder-Decoder-LSTM in South West of Algeria (Adrar)Khouloud ZouaidiaSalim GhanemiMohamed Saber Rais
We compared three advanced neural network approaches: Deep CNN, CNN-LSTM, and multifusion CNN (MFCNN). The fused CNN-LSTM model takes only 0.64ms to classify each PQDs signal and achieves an accuracy of 98.95% and 98.89% in synthetic data and simulated power systems which indic...