我们做了次假设检验,得到了V+S个差异基因(V+S个基因的P值≤0.05),V+S也表示排序后的p值小于0.05中的最大的那个p值对应的排序号(秩),即最大的那个p值为上述的pi,排序号为上述i。而此时V等于pi*m,所以E(Q)≤q*可以写成 修正的q*值取最小值,即为我们平时工...
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
我们在生物数据统计分析中,经常会听到p-value,adjusted p-value,q-value以及False discovery rate(FDR)。比如最常见实验组和对照组的差异基因表达分析,除了获得一个p值(p-value),通常而言还会得到一个adjusted p-value或者FDR(false discovery rate)。那么他们之间到底有什么关系,为什么已经有了一个p-value来指征显...
q-value是Storey和Tibshirani提出的,它基于p-value分布,能提供一个调整后的FDR估计。减少统计检验次数的方法之一是通过筛选或预处理数据,只对可能重要的部分进行深入分析。总的来说,这些校正方法旨在平衡检验的敏感性和可靠性,确保在大量假设检验中得出的结果更为准确。通过理解这些概念,研究人员能够更...
1. 按照和p-value类似的定义,Storey给出了q-value的定义。 2. q-value量化了在观察统计量T = t时,拒绝H0所犯的最小pFDR。p-value的定义基于H0=0的条件而量化T属于Talpha的概率,显然q值是p值定义的一个逆过程,q值是基于T属于Talpha的条件而量化H0=0的概率。 3. 和BH控制不同,q值和pFDR正好相反,即通...
修正的q*值取最小值,即为我们平时工作中用到的修正的FDR值q-valuei。这里的公式即为Bonferroni型多重检验过程中的公式。也是开始FDR的计算公式: 最后是FDR校正后的p值计算的一个小例子。 大家可以移步该网页查看 http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html ...
1.按照和p-value类似的定义,Storey给出了q-value的定义。 2.q-value量化了在观察统计量T = t时,拒绝H0所犯的最小pFDR。p-value的定义基于H0=0的条件而量化T属于Talpha的概率,显然q值是p值定义的一个逆过程,q值是基于T属于Talpha的条件而量化H0=0的概率。
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
(1)Bonferroni校正法,进行了多少次检验,单次阈值(称为校正α,或α’)=0.05/检验次数n,这样总体的假阳性率(n×α’)控制在0.05以下。但这种方法在检验次数较多时阈值过于严格,1000次检验的α’=0.05/1000=0.00005。(2)FDR法/q-value法:False discovery rate (FDR)即错误发现率。...