FastLIO2是开源LIO中比较优秀的一个,前端用了增量的kdtree(ikd-tree),后端用了迭代ESKF(IEKF),流程短,计算快。Faster-LIO则把ikd-tree替换成了iVox,顺带优化了一些代码逻辑,实现了更快的LIO。在典型的32线激光雷达中可以取得100-200Hz左右的计算频率,在固态雷达...
此外FAST-LIO2的状态估计是从FAST-LIO继承的紧耦合迭代卡尔曼滤波器(IEKF),FAST-LIO2的流程如下图所示,顺序采样的激光雷达原始点首先在10ms(用于100Hz更新)和100ms(用于10Hz更新)之间的时间段内累积。累积的点云称为扫描数据,为了执行状态估计,新扫描中的点云通过紧耦合迭代卡尔曼滤波框架配准到大型局部地图中维...
得益于ikd-Tree,Fast-LIO2不再是类似LOAM般的提取edge特征与plane特征,而是直接将每个三维点与地图配准。因此,其能够较稳定地运行在一些较难提取手工特征的场景中。此外FAST-LIO2的状态估计是从FAST-LIO继承的紧耦合迭代卡尔曼滤波器(IEKF),FAST-LIO2的流程如下图所示,顺序采样的激光雷达原始点首先在10ms(用于100...
激光SLAM:Faster-Lio算法编译与测试 来源:古月居 前言 Faster-LIO是基于FastLIO2开发的。FastLIO2是开源LIO中比较优秀的一个,前端用了增量的kdtree(ikd-tree),后端用了迭代ESKF(IEKF),流程短,计算快。Faster-LIO则把ikd-tree替换成了iVox,顺带优化了一些代码逻辑,实现了更快的LIO。在典型的32线激光雷达中可以...
数据集实验主要比较整个LIO系统的耗时和计算精度。由于Faster-LIO框架与FastLIO2基本相同,我们时间上对标的也主要是FastLIO2,其他系统主要是用来做个参考。32线雷达的详细步骤算法耗时如下图所示: 在精度方面,考虑到LIO默认不带回环检测,所以我们主要评价每百米的漂移误差指标(百分比形式),见下表 ...
据了解,本论文中提及的Faster-LIO是基于FastLIO2开发的。FastLIO2是开源LIO中较为优秀的代表,其前端使用了增量的kdtree(ikd-tree),后端使用了迭代ESKF(IEKF),具有流程短、计算快等优势特点。Faster-LIO则把ikd-tree替换为iVox,同时优化了一些代码逻辑,实现了更快的LIO。
数据集实验主要比较整个LIO系统的耗时和计算精度。由于Faster-LIO框架与FastLIO2基本相同,我们时间上对标的也主要是FastLIO2,其他系统主要是用来做个参考。32线雷达的详细步骤算法耗时如下图所示: 在精度方面,考虑到LIO默认不带回环检测,所以我们主要评价每百米的漂移误差指标(百分比形式),见下表 ...
数据集实验主要比较整个LIO系统的耗时和计算精度。由于Faster-LIO框架与FastLIO2基本相同,我们时间上对标的也主要是FastLIO2,其他系统主要是用来做个参考。32线雷达的详细步骤算法耗时如下图所示: 在精度方面,考虑到LIO默认不带回环检测,所以我们主要评价每百米的漂移误差指标(百分比形式),见下表 ...
S-FAST_LIO源码 解读 解读2 激光SLAM Faster-LIOFAST-LIO2的改进点主要在第一个版本上增加了ikd-tree和去除了特征匹配,采用直接匹配的方式构建残差。直接将原始点注册到地图上然后更新地图,而不提取特征。这样可…
相比于港大 MaRS-Lab 的FastLio2方案,Faster-Lio 在保持精度基本不变的情况下,实现了更高的算法效率,这主要归功于使用了增量式体素结构iVox,增和查的效率比ikd-Tree更优,进一步降低了维护local map和查询近邻的耗时。 本来,高博 @半闲居士 已经在自己的知乎文章中对这篇文章的工作进行了非常好的总结(包括 i...