运行一段时间,就可以开始轨迹评估了,我这里是用的street05: evo_ape tum ./result/gt/street_05.txt ./result/m2dgr_street05.txt -vap ape:绝对位置误差(Absolute Position Error,APE)是用来评估位置估计精度的指标之一。APE表示估计位置与真实位置之间的距离差异,一般以欧氏距离或其他合适的度量方式进行计算。AP...
evo_traj kitti optimized_pose.txt without_optimized_pose.txt -p所以有2个办法,一个升频,一个是降频,目前推荐降频,将FAST_LIO保存的without_optimized_pose.txt 进行抽样性的降频处理; 查看两个文件的数据量对比,是4倍关系,所以将保存without_optimized_pose.txt文件的信息进行抽样降频,将i改写成为i+3;如下所示...
下一步将对M2DGR数据集进行算法适配,并利用EVO工具评估轨迹。
success: False evo 绘制轨迹 evo_traj kitti gnss_pose.txt optimized_pose.txt -p FAST-LIO (no gnss prior factor)FAST-LIO-SAM (with gnss prior factor) 4.some config #GPS SettingsuseImuHeadingInitialization:false#if using GPS data, set to "true"useGpsElevation:false#if GPS elevation is bad,...
https://geofhr-my.sharepoint.com/:u:/g/personal/ajakopec_geof_hr/EVO860RfOAxCjQsdN6Dvz68BgmdISTwoKXCli00A4DhSzw?e=Jnt1eJ and I also got this error: Please, help me! I'm trying for a week to get good results... Seems all this does is the equivalent of FAST_LIO - no loop ...
evo_traj kitti gnss_pose.txt optimized_pose.txt -p FAST-LIO (no gnss prior factor)FAST-LIO-SAM (with gnss prior factor) 4.some config # GPS Settings useImuHeadingInitialization: false # if using GPS data, set to "true" useGpsElevation: false # if GPS elevation is bad, set to "fa...
git clonehttps://github.com/MichaelGrupp/evo.git 然后进入evo文件夹 pip install --editable . --...
从零开始写基于IESKF的激光里程计(七)之适配M2DGR并使用EVO评估轨迹(2023/08/31) (*^▽^*) 后端部分开始更新了(*^▽^*)(*^▽^*)(*^▽^*)(*^▽^*) 后端1:动手写SLAM后端(一)!使用Ceres求解位姿图优化(2023/11/10) 后端2:动手写SLAM后端(二) 完成后端 (2024/03/18) 公式部分:(2023/12/3)...
2.6 /path 三、用livox mid360硬件适配LIO_SAM算法 代码仓库在[1]项目做完可以PR哦;背景图是github为了庆祝万圣节哦! 一、借鉴FAST_LIO2的做法[2] 1.1 对比配置文件[3] 首先对比下面的2个launch文件,几乎没有差别,主要差别在配置文件 **.yaml;
从零开始写基于IESKF的激光里程计(七)之适配M2DGR并使用EVO评估轨迹 本章对应代码的链接:v7git clone https://github.com/mengkai98/ieskf_slam.git -b v7(2023年9月3日 更新:)收到小伙伴的私信说M2DG… 阅读全文 动手写Fast-Lio!从零开始写基于IESKF的激光里程计(六)之后向传播...