export PATH=/usr/local/cuda-10.2/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH export C_INCLUDE_PATH=/usr/local/cuda-10.2/include:$C_INCLUDE_PATH export CPLUS_INCLUDE_PATH=/usr/local/cuda-10.2/include:$CPLUS_INCLUDE_PATH source .bashrc 11. 安装Anaconda 1...
export PYTHONHOME=$ENV/dependency_cuda10_py3/anaconda3 export PATH=/opt/compiler/gcc-4.8.2/bin:$CUDAHOME/bin:$PYTHONHOME/bin:$PATH export LD_LIBRARY_PATH=$CUDAHOME/lib64:$CUDAHOME/lib64/stubs:$ENV/dependency_cuda10_py3/cudnn_v7.6/cuda/lib64:$PYTHONHOME/lib:$LD_LIBRARY_PATH export LD...
#exportPATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}} #exportLD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/lib64 export PATH=/usr/local/cuda-10.1/bin:/usr/local/cuda-10.1/NsightCompute-2019.1${PATH:+:${PATH}} #exportLD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.1/...
2.只需要在文件末尾添加: /usr/local/lib 3.使得刚才的配置路径生效: sudo ldconfig 第二步:配置bash 1.打开bash.bashrc sudo gedit /etc/bash.bashrc # sudo gedit ~/.bashrc 2.在最末尾添加 xport PKG_CONFIG_PATH=~/opencv-3.4.1/build/installed/lib/pkgconfig #export LD_LIBRARY_PATH=~/opencv-3....
检查你安装的 PaddlePaddle 版本支持的 CUDA 和 cuDNN 版本。这通常可以在 PaddlePaddle 的官方文档或安装指南中找到。配置环境变量: 由于你使用的是 Windows 系统,你需要确保 cudnn64_8.dll 所在的目录被添加到了系统的 PATH 环境变量中。 你可以通过以下步骤来设置环境变量: 右键点击“此电脑”或“计算机”,选...
- Linux: set LD_LIBRARY_PATH by `export LD_LIBRARY_PATH=...` - Windows: set PATH by `set PATH=XXX; [Hint: dso_handle should not be null.] (at ..\paddle\fluid\platform\dynload\tensorrt.cc:57) 版本&环境信息 Version & Environment Information ...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
export FLAGS_fraction_of_gpu_memory_to_use=0.9 export PYTHONHOME=/home/vis/hutao/anaconda3/ export PATH=/home/vis/hutao/anaconda3/bin:$PATH export LD_LIBRARY_PATH=/home/vis/hutao/anaconda3/lib/:$LD_LIBRARY_PATH export LD_LIBRARY_PATH=/home/vis/hutao/app/cuda9.0-cudnn7.6/lib64:$LD...
A GPU-Ready Tensor Library Dynamic Neural Networks: Tape-Based Autograd Python First Imperative Experiences Fast and Lean Extensions Without Pain Installation Binaries NVIDIA Jetson Platforms From Source Prerequisites NVIDIA CUDA Support AMD ROCm Support Intel GPU Support Install Dependencies Get the ...
A GPU-Ready Tensor Library Dynamic Neural Networks: Tape-Based Autograd Python First Imperative Experiences Fast and Lean Extensions Without Pain Installation Binaries NVIDIA Jetson Platforms From Source Prerequisites NVIDIA CUDA Support AMD ROCm Support Intel GPU Support Install Dependencies Get the ...