Euler-Bernoulli方程 1. The initial value problems for a Boussinesq equation and a Euler-Bernoulli equation are established in the following Sobolev spaceFirstly, in this minus index Sobolev space, we prove the Sobolev multiplying lemma by using microlocal analysis. 在相同的Sobolev空间中,第三章研究...
For the Euler-Bernoulli beam equation which involves boundary disturbances, internal uncertainties, and external disturbances, the high gain and difficult-to-accurately-solve unknown disturbance derivative problems introduced by traditional perturbation observers need to be overcome. In this paper, ...
EquationChapter1Section1Euler-Bernoullibeam一、理论部分Euler-Bernoullibeam假设()由()式可得()虚位移原理()其中() 令,为单元长度,则上式成为()单元节点位移取为()令()其中形函数() ()分别对式()、()求一阶和两阶导数得() ()由,可得() ()将()、()式代入()式,可得()刚度矩阵() () ()二、算例...
Thus, they can be considered as slender beams and they are therefore modeled by using Euler-Bernoulli beam approach. The soil surrounding the pipelines is also assumed to be uniform along pipelines. The governing equation of the problem is very similar to the laterally loaded beam on elastic ...
带有局部干扰的Euler-Bernoulli梁方程的稳定性分析 韩鹏程;刘丹红 【摘要】In order to enrich the system stability theory of the control theories,taking Euler-Bernoulli beam equation as the research subject,the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied.A ...
欧拉-伯努利梁 Euler-Bernoulli Beam 欧拉-伯努利梁 前提条件: 发生小变形 、线弹性范围内、材料各向同性 、等截面。 特性: 只有弯曲形变 、 横截面没有产生切应变; 产生的现象: 梁受力发生变形时,横截面依然为一个平面,且始终垂直于中性轴。 挠度:
This chapter starts with the analytical description of beam members. Based on the three basic equations of continuum mechanics, i.e., the kinematics relationship, the constitutive law and the equilibrium equation, the partial differential equation, which
1、12Euler-Bernoulli beam假设由(1.1)式可得虚位移原理其中Euler-Ber no ulli beam一、理论部分u u0yvv v xuouoXxxu。yvyyxyPextf udV T udSdVh/2le为单元长度,Rnt单元节点位移取为其中形函数h/2h/2h/2xxxxdxdyEAu0u0EIv则上式成为UEAu。u。u0y v dxdyv dxEIv v訂U01, W,v1,U02,v2,v2Nu10 ...
1、Euler-Bernoulli beam一、理论部分Euler-Bernoulli beam 假设uu0yvvv xu0u0 x由 (1.1)式可得xxu0yvyy0xy0虚位移原理PintPext0其中Pextf udVTudSPintdVh/2lexxdxdyb0xxh/2h/2leyvu0yv dxdybE u0h/20leu0EIv vdxEAu 00令 x le1 , le 为单元长度,则上式成为2v leP1u EIv dEAuint1002单元节点位...
欧拉-伯努利梁(Euler-Bernoulli Beam)适用于简化分析在小变形、线弹性材料、等截面条件下的梁结构。其理论假设梁只有弯曲形变,横截面不产生切应变,故受力方向垂直于中性轴,仅有一个变量v表示垂直方向的位移。由于忽略了切应变的影响,计算出的梁变形量低于实际,适用于极长的梁或薄板。相比之下,铁木...