Decoder-Only GPT系列 文本生成、机器翻译 生成能力强,擅长创造性写作 无法直接处理输入编码 Encoder-Only BERT系列 文本分类、情感分析 语义理解能力强,处理速度快 无法生成输出序列 Encoder-Decoder T5、盘古NLP 机器翻译、对话生成 能处理输入输出不一致的任务 模型复杂度高,计算资源消耗大 五、结语 大语言模型的三大...
Decoder-Only、Encoder-Only和Encoder-Decoder三种架构各有千秋,它们在设计上各有侧重,适用于不同的任务和场景。在选择合适的架构时,需要根据具体任务的需求和限制进行综合考虑。无论是生成任务还是理解任务,亦或是复杂的序列转换任务,这三种架构都能提供有效的解决方案。希望本文能够帮助读者更好地理解这三种架构的基本...
GPT(Generative Pre-trained Transformer)系列模型是最典型的 Decoder-only 网络的例子,今天来梳理下Decoder-only 网络和Encoder-Decoder(编码器-解码器)架构之间的区别,并澄清它们各自适用的任务。 编码器-解码器架构 编码器-解码器架构(如标准的 Transformer)由两个主要部分组成:编码器(Encoder)和解码器(Decoder)。
下面这张图是一个大模型的一个分布树,纵轴代表大模型的发布年份和大模型输入token数,这个图很有代表性,每一个分支代表不同的模型架构,今天以图中根系标注的三大类展开:Encoder-only、Encoder-Decoder、Decoder-only;我们分别来看一下这几个架构的特点和原理吧。 Encoder-only Encoder-only是以Bert为代表的模型及其...
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
Encoder-Only 架构适用于文本分类和情感分析等任务,其前景主要取决于其在这些任务中的性能和准确性。Decoder-Only 架构适用于文本生成和机器翻译等任务,其前景主要取决于其生成文本的质量和多样性。Encoder-Decoder 架构适用于机器翻译和对话生成等任务,其前景主要取决于其在这些任务中的性能和准确性。
问题:尽管Encoder-Decoder结构听起来更复杂,能做更多的事情,但许多流行的模型(如 GPT)都只使用Decoder-Only结构,这样是否更好呢? 1、Decoder-Only 模型 Decoder和Encoder结构之间有什么区别?关键区别在于输入注意力是否(因果)被掩码mask掉。Decoder结构使用的是基于掩码mask的注意力。
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
AI的未来,我们为什么需要更灵活的计算?:encoder-only/decoder-only/encoder-decoder,并聊聊他们的问题和发展方向美国的牛粪博士 立即播放 打开App,流畅又高清100+个相关视频 更多 5217 2 04:08 App CVPR2025 吐槽大会:你的审稿人到底懂不懂AI?欢迎聊聊你的cvpr投稿经历,让我们一起成长。 378 0 04:45 App ...