Decoder-Only GPT系列 文本生成、机器翻译 生成能力强,擅长创造性写作 无法直接处理输入编码 Encoder-Only BERT系列 文本分类、情感分析 语义理解能力强,处理速度快 无法生成输出序列 Encoder-Decoder T5、盘古NLP 机器翻译、对话生成 能处理输入输出不一致的任务 模型复杂度高,计算资源消耗大 五、结语 大
Decoder-Only、Encoder-Only和Encoder-Decoder三种架构各有千秋,它们在设计上各有侧重,适用于不同的任务和场景。在选择合适的架构时,需要根据具体任务的需求和限制进行综合考虑。无论是生成任务还是理解任务,亦或是复杂的序列转换任务,这三种架构都能提供有效的解决方案。希望本文能够帮助读者更好地理解这三种架构的基本...
下面这张图是一个大模型的一个分布树,纵轴代表大模型的发布年份和大模型输入token数,这个图很有代表性,每一个分支代表不同的模型架构,今天以图中根系标注的三大类展开:Encoder-only、Encoder-Decoder、Decoder-only;我们分别来看一下这几个架构的特点和原理吧。Encoder...
GPT(Generative Pre-trained Transformer)系列模型是最典型的 Decoder-only 网络的例子,今天来梳理下Decoder-only 网络和Encoder-Decoder(编码器-解码器)架构之间的区别,并澄清它们各自适用的任务。 编码器-解码器架构 编码器-解码器架构(如标准的 Transformer)由两个主要部分组成:编码器(Encoder)和解码器(Decoder)。
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
Encoder-Only 架构适用于文本分类和情感分析等任务,其前景主要取决于其在这些任务中的性能和准确性。Decoder-Only 架构适用于文本生成和机器翻译等任务,其前景主要取决于其生成文本的质量和多样性。Encoder-Decoder 架构适用于机器翻译和对话生成等任务,其前景主要取决于其在这些任务中的性能和准确性。
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
在自然语言处理(NLP)和深度学习领域,特别是在序列到序列(Seq2Seq)的任务中,Encoder-Decoder架构是一种常见的模型结构。这种架构通常包含两个主要部分:Encoder(编码器)和Decoder(解码器)。然而,根据任务需求的不同,有时我们可能只需要使用Encoder或Decoder部分,这就引出了“encoder-only”和“decoder-only”的概念。下...
这些模型背后的架构是其强大功能的基石,其中Decoder-Only、Encoder-Only、Encoder-Decoder三种架构尤为引人注目。本文将深入探讨这三种架构的特点、适用场景以及它们各自的优势与局限。 Decoder-Only架构:创造性写作的专家 Decoder-Only架构,以其强大的生成能力而著称,是生成式任务的理想选择。这一架构的代表模型包括GPT...