Transformer模型的结构图如下: 大模型结构 Encoder-only Encoder-Decoder Decoder-only 最近这段时间一直在研究这个大模型的能力到底来源于哪里?对于大模型的是否智能?有像图灵奖得主Yann LeCun这样持反对意见的,也有图灵奖得主Hinton持支持意见的,作为一名从业人员,我们先从模型架构的角度来解剖大模型,看看大模型到底是什...
Decoder-Only GPT系列 文本生成、机器翻译 生成能力强,擅长创造性写作 无法直接处理输入编码 Encoder-Only BERT系列 文本分类、情感分析 语义理解能力强,处理速度快 无法生成输出序列 Encoder-Decoder T5、盘古NLP 机器翻译、对话生成 能处理输入输出不一致的任务 模型复杂度高,计算资源消耗大 五、结语 大语言模型的三大...
encoder- decoder、encoder-only、decoder-only都是Transformer系列模型,代表模型分别是T5、BERT、GPT,他们的原理可以参考Transformer模型及其变种(BERT、GPT)这个文章,至于为什么大模型倾向于decoder-only,主要有以下几个点: 从任务角度回答: 目前的大模型应该说是生成式大模型,主要是以序列生成为目标和主要场景,这对于BER...
由Transformer论文衍生出来的大语言模型,主要有三条技术路线。 Encoder-Only:以谷歌的BERT为代表。 Encoder-Decoder:以Meta的BART、谷歌的T5、清华大学的GLM为代表。 Decoder-Only:以OpenAI的GPT、谷歌的Bard、Meta的LLaMA、DeepMind的Chinchilla、Anthropic的Claude为代表。 从2017年发展到现在,基本可以判定Decoder-Only路线...
大规模语言模型的缩放法则(Scaling Laws) 我们从下图中可以看出, 这些语言模型主要分为三类。一是“仅编码器(encoder-only)”组(上图中的粉色部 分),该类语言模型擅长文本理解, 因为它们允许信息在文本的两个方向上流动。二是“仅解码器(decoder-only)”组(上图中的蓝色部分),该类语言模型擅长文本生成, 因为信...