1. Transformer 中的 Encoder 和 Decoder 的注意力机制 Encoder 的注意力机制: Transformer 的 Encoder 部分通常是全局双向的,每个词可以对句子中的所有其他词进行注意力计算。 没有掩码,因为 Encoder 只需要关注输入句子中的所有词,不需要做单向或双向掩码。BERT 使用的双向掩码策略是一种特殊训练方式,与原始 Encoder...
在Encoder-Decoder架构中,需要考虑预测的词和输出的词之间的关系的关系,矩阵如下: y1y2y3x1111x2111x3111 Encoder-Decoder架构也被称为Seq2Seq,就是序列到序列,常见的模型有BART、T5、盘古大模型等,多用与对话、翻译等任务。 Encoder对应的掩码矩阵(Mask Matri)如下: 000000000 因为需要关注输入的词和输出的词...
一、Encoder-Decoder的本质 核心逻辑:将现实问题转化为数学问题,通过求解数学问题来得到现实世界的解决方案。 Encoder (编码器):“将现实问题转化为数学问题” Encoder编码器 Decoder (解码器):“求解数学问题,并转化为现实世界的解决方案” Decoder解码器 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列...
Transformer模型是典型的Encoder-Decoder架构,它在机器翻译、文本摘要等领域取得了显著成效。 四、对比与总结 架构类型核心特点优势应用场景 Decoder-Only 仅含解码器 计算高效、内存占用少、泛化能力强 文本生成、对话系统 Encoder-Only 仅含编码器 处理高效、灵活性高 文本分类、情感分析 Encoder-Decoder 编码器和解码器...
粉色分支,Encoder-only框架(也叫Auto-Encoder),典型代表如BERT等 绿色分支,Encoder-decoder框架,典型代表如T5和GLM等 蓝色分支,Decoder-only框架(也叫Auto-Regressive),典型代表如GPT系列/LLaMa/PaLM等 Harnessing the Power of LLMs in Practice 刚听这三种框架名称可能会有点懵逼,不用担心,先感性认识一下。如下所...
Encoder-Decoder结构: 当任务需要处理输入序列并生成与之相关的输出序列时,通常选择使用Encoder-Decoder...
本文所需要详细讲的Decoder和Encoder,他们分别就是ChannelInboundHandler和ChannelOutboundHandler,分别用于在数据流进来的时候将字节码转换为消息对象和数据流出去的时候将消息对象转换为字节码。 1.解码器(Decoder) 解码器负责 解码“入站”数据从一种格式到另一种格式,解码器处理入站数据是抽象ChannelInboundHandler的...
Prefix Decoder,即前缀语言模型,其结构介于Causal Decoder和Encoder-Decoder之间。该框架在输入部分采用双向注意力,允许前缀序列中的任意两个token相互可见;而在输出部分则采用单向注意力,类似于Causal Decoder。代表模型有ChatGLM、U-PaLM等。 优点 输入理解充分:由于输入部分采用双向注意力,Prefix Decoder对问题的编码理解...
Encoder-Decoder(编码器-解码器)框架是用于处理序列到序列任务的一种常见架构,尤其在机器翻译领域得到了广泛应用。这种框架包含两个主要组件:编码器(Encoder)和解码器(Decoder)。编码器(Encoder):编码器的任务是接受输入序列,并将其转换为具有固定形状的编码状态。它通过递归的神经网络层实现,一般采用循环神经...
Encoder-decoder是一种常见的神经网络架构,通常用于序列到序列(sequence-to-sequence)的任务,例如机器翻译、文本摘要和对话生成等。 简单来说,encoder-decoder模型由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责将输入序列(例如一个句子)转换为一个固定长度的向量表示,而解码器则根据这个向量表示来生成输出...