1. Transformer 中的 Encoder 和 Decoder 的注意力机制 Encoder 的注意力机制: Transformer 的 Encoder 部分通常是全局双向的,每个词可以对句子中的所有其他词进行注意力计算。 没有掩码,因为 Encoder 只需要关注输入句子中的所有词,不需要做单向或双向掩码。BERT 使用的双向掩码策略是一种特殊训练方式,与原始 Encoder...
Encoder 在Encoder架构中,需要考虑每个词之间和自身与自身之间的关系,矩阵如下: \begin{array}{*{20}{c}} {}&{{x_1}}&{{x_2}}&{{x_3}}\\ {{x_1}}&1&1&1\\ {{x_2}}&1&1&1\\…
Encoder-Decoder模型在NLP领域的应用 1.机器翻译 机器翻译是Encoder-Decoder模型最为广泛的应用之一。在机器翻译任务中,Encoder-Decoder模型将一个源语言句子映射成一个目标语言句子,其中编码器将源语言句子编码成一个固定长度的向量,解码器将这个向量解码成一个目标语言句子。 在编码阶段,编码器部分的任务是处理输入序列...
一、Encoder-Decoder的本质 核心逻辑:将现实问题转化为数学问题,通过求解数学问题来得到现实世界的解决方案。 Encoder (编码器):“将现实问题转化为数学问题” Encoder编码器 Decoder (解码器):“求解数学问题,并转化为现实世界的解决方案” Decoder解码器 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。
Encoder-Decoder框架 概述 Encoder-Decoder 并不是一个具体的模型,而是一个通用的框架。 Encoder 和 Decoder 部分可以是任意文字,语音,图像,视频数据。 模型可以是 CNN,RNN,LSTM,GRU,Attention 等等。 编码,就是将输入序列转化转化
Encoder-Decoder(编码器-解码器)框架是用于处理序列到序列任务的一种常见架构,尤其在机器翻译领域得到了广泛应用。这种框架包含两个主要组件:编码器(Encoder)和解码器(Decoder)。编码器(Encoder):编码器的任务是接受输入序列,并将其转换为具有固定形状的编码状态。它通过递归的神经网络层实现,一般采用循环神经...
Encoder-Only架构,也被称为单向架构,仅包含编码器部分,没有解码器。它主要适用于理解任务,如文本分类、情感分析等。代表模型是BERT(Bidirectional Encoder Representations from Transformers),通过双向注意力机制捕捉丰富的上下文信息。 工作原理:Encoder-Only架构利用编码器对输入序列进行编码,提取其特征和语义信息。在BERT...
Prefix Decoder,即前缀语言模型,其结构介于Causal Decoder和Encoder-Decoder之间。该框架在输入部分采用双向注意力,允许前缀序列中的任意两个token相互可见;而在输出部分则采用单向注意力,类似于Causal Decoder。代表模型有ChatGLM、U-PaLM等。 优点 输入理解充分:由于输入部分采用双向注意力,Prefix Decoder对问题的编码理解...
Encoder-Decoder工作原理 一、Seq2Seq工作原理 Seq2Seq(Sequence-to-sequence):输入一个序列,输出另一个序列。 在2014年,Cho等人首次在循环神经网络(RNN)中提出了Seq2Seq(序列到序列)模型。与传统的统计翻译模型相比,Seq2Seq模型极大地简化了序列转换任务的处理流程。