理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,...
Transformer模型中的Encoder(编码器)和Decoder(解码器)是两个核心组件,它们在模型中扮演着不同的角色,并具有一些关键的区别。以下是对它们的详细比较:一、主要任务与功能Encoder(编码器)主要任务:处理输入序列,将其转换为一组内部表示(也称为编码)。这些内部表示将捕获输入序列中的关键信息,以便后续的处理和生成任务使...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制:
BERT Transformer 使用双向 self-attention,而 GPT Transformer 使用受限制的 self-attention,其中每个 token 只能处理其左侧的上下文。双向 Transformer 通常被称为“Transformer encoder”,而左侧上下文被称为“Transformer decoder”,decoder 是不能获要预测的信息的。
本文从序列到序列(Seq2Seq)模型,并结合Transformer讲述了到Encoder-Decoder结构。并在其中穿插讲述了自回归编码器(AT Encoder)和非自回归编码器(NAT Encoder)的一些原理。 序列到序列模型(Seq2Seq) 序列到序列(sequence to sequence)模型指:输入和输出都是序列(sequence),且输出序列的长度由模型来决定。 Seq2Seq模型...
在深度学习和自然语言处理(NLP)领域,Transformer模型以其卓越的性能和广泛的应用而著称。不同于传统的循环神经网络(RNN)或卷积神经网络(CNN),Transformer完全基于自注意力(Self-Attention)机制,通过Encoder和Decoder两个核心组件实现了对序列数据的高效处理。本文将详细探讨Transformer中Encoder与Decoder在训练和推理过程中的...
在Transformer模型中,Encoder与Decoder的堆叠是实现模型深度的关键。堆叠机制通过多层的自注意力机制与前馈网络,逐步提取输入数据的高层次特征。 1.1 Encoder堆叠实现 Encoder堆叠的实现通过定义一个Encoder类完成。以下是实现代码示例: classEncoder(tf.keras.layers.Layer):def__init__(self,num_layers,d_model,num_hea...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。