Decoder-Only GPT系列 文本生成、机器翻译 生成能力强,擅长创造性写作 无法直接处理输入编码 Encoder-Only BERT系列 文本分类、情感分析 语义理解能力强,处理速度快 无法生成输出序列 Encoder-Decoder T5、盘古NLP 机器翻译、对话生成 能处理输入输出不一致的任务 模型复杂度高,计算资源消耗大 五、结语 大
Decoder-Only模型通过其单向注意力机制和自回归生成方式,非常适合处理这类任务。 参数效率与灵活性:Decoder-Only模型在参数效率上通常优于Encoder-Decoder模型,因为它不需要同时训练两个模块。此外,Decoder-Only模型在预训练和微调方面也更具灵活性,可以方便地应用到不同的下游任务中。 三、技术优势与限制 Encoder-Decode...
GPT(Generative Pre-trained Transformer)系列模型是最典型的 Decoder-only 网络的例子,今天来梳理下Decoder-only 网络和Encoder-Decoder(编码器-解码器)架构之间的区别,并澄清它们各自适用的任务。 编码器-…
Encoder-only Encoder-Decoder Decoder-only 最近这段时间一直在研究这个大模型的能力到底来源于哪里?对于大模型的是否智能?有像图灵奖得主Yann LeCun这样持反对意见的,也有图灵奖得主Hinton持支持意见的,作为一名从业人员,我们先从模型架构的角度来解剖大模型,看看大模型到底是什么样的?目前大模型基于Transformer,Transform...
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
然而,Decoder-Only架构的模型无法直接处理输入编码,这在一定程度上限制了其在某些任务上的表现。 Encoder-Only架构:理解与分析的高手 与Decoder-Only架构不同,Encoder-Only架构专注于理解和分析输入的信息,而不是创造新的内容。这一架构的代表模型包括BERT、RoBERTa和ALBERT等。它们通过编码器对输入文本进行编码,提取其...
Decoder-Only(仅解码器) 1. 定义与用途 Decoder-Only模型则是指那些只包含解码器部分的模型。这类模型通常用于生成输出序列,但它们不依赖于显式的编码器来生成这个序列;相反,它们可能会从某种形式的初始状态或提示开始生成文本。 2. 常见应用 文本生成:如故事创作、对话系统、摘要生成等,其中模型根据给定的上下文或...
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
1、Decoder-Only 模型 Decoder和Encoder结构之间有什么区别?关键区别在于输入注意力是否(因果)被掩码mask掉。Decoder结构使用的是基于掩码mask的注意力。 设想我们有一个输入句子,“I like machine learning.”。对于基于掩码的因果注意力层来说,每个单词只能看到它的前一个单词。例如对于单词 "machine"来说,解码器只能...
Transformer架构起源于机器翻译,发展出Encoder-only、Decoder-only和Encoder-Decoder三种主要类型。Encoder-only如BERT适用于NLU任务,Decoder-only如GPT用于文本生成,Encoder-Decoder如T5和BART在多任务上表现优异,各家族模型不...