编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。如图1所示,这种结构能够处理序列到序列(Seq2Seq)的任务,如机器翻译、文本摘要、对话系统、声音转化等。 图1 编码器-解码器结构...
Encoder-Decoder 架构 Encoder-Decoder架构是一种强大的神经网络模型,主要用于处理序列到序列(Sequence to Sequence, Seq2Seq)任务,如机器翻译、文本摘要等。它在Encoder-only架构的基础上引入了Decoder组件,形成了一个完整的编码-解码系统。 架构组成 该架构主要包含两个核心部分: 1.编码器(Encoder) 由多个编码模块堆...
这个Context Vector是输入序列中各个词根据当前Decoder隐藏状态重新加权得到的表示。这个Vector包含了输入序列中重要信息的加权表示,用于指导Decoder生成当前时刻的输出。 三、Transformer工作原理 Transformer:通常 Attention 会与传统的模型配合起来使用,但 Google 的一篇论文《 Attention Is All You Need 》中提出...
Dataset 接受序列数据作为输入,并负责构建每个数据点以输入到模型中。Dataloader 则可以读取Dataset 生成批量的数据 代码语言:javascript 复制 classStoreItemDataset(Dataset): def__init__(self,cat_columns=[],num_columns=[],embed_vector_size...
Encoder-Decoder模型框架(编码器-解码器模型框架)最早在2014年提出,当时是为了解决机器翻译的问题(机器翻译就是一个典型的Seq2Seq问题)而构建的,随后变成了深度学习中常见的模型框架。 Encoder-Decoder模型的结构包括一个编码器和一个解码器,编码器(Encoder)会先对输入的序列进行处理,然后将处理后的向量发送给解码器(...
模型原理。 Encoder-Decoder模型主要由两部分组成:编码器(Encoder)和解码器(Decoder)。 编码器(Encoder):负责将输入序列(如一段文本)转换为一个固定长度的上下文向量(context vector)。这个上下文向量可以看作是输入序列的一种抽象表示,它浓缩了输入序列中的关键信息。在这个过程中,编码器会对输入序列中的每个元素进行...
Encoder-Decoder模型并非特指某一具体算法,而是一类算法框架的统称。该模型由编码器(Encoder)和解码器(Decoder)两部分组成,通过这两个部分协同工作,实现输入序列到输出序列的转换。 编码器(Encoder):负责将输入序列编码成一个固定长度的向量(通常称为“上下文向量”或“编码向量”)。这一过程通常通过循环神经网络(RNN)...
二、Decoder 家族 Transformer decoder 模型的进展在很大程度上是由OpenAI引领的。这些模型非常擅长预测序列中的下一个单词,因此主要用于文本生成任务。它们的进步是通过使用更大的数据集并将语言模型扩展到越来越大的尺寸来推动的。 1. GPT GPT的引入结合了NLP中的两个关键思想:新颖高效的Transformer decoder 架构和迁...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义...
📚 引言:Encoder-Decoder是深度学习中一个非常基础且重要的概念,它能够将现实问题转化为数学问题,并通过求解数学问题来得到解决方案。本文将从核心逻辑、Encoder和Decoder的作用以及Seq2Seq模型等方面详细讲解Encoder-Decoder。💡 核心逻辑:将现实问题转化为数学问题,通过求解数学问题来得到现实世界的解决方案。🔍...