EM算法又称最大期望算法(Expectation-maximization algorithm),是用来解决含有隐变量概率模型的参数估计问题。 网上很多资料要不就是纯理论介绍,枯燥难懂,理论不知道如何应用于实际;要不就是虽然有例子,但…
这个例子来源于阐述EM算法的经典论文:《Do, C. B., & Batzoglou, S. (2008).What is the expectation maximization algorithm?. Nature biotechnology, 26(8), 897.》在这个例子当中,我们有A和B两枚硬币,其中A硬币正面朝上的概率是0.5,B硬币正面朝上的概率是0.4,我们随机从两枚硬币当中选取一枚进行实验。
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题。其基本思想是首先根据己经给出的观测数据,估计出模型参数的值;然后...
机器学习算法原理实现——EM算法 【EM算法简介】 EM算法,全称为期望最大化算法(Expectation-Maximization Algorithm),是一种迭代优化算法,主要用于含有隐变量的概率模型参数的估计。EM算法的基本思想是:如果给定模型的参数,那么可以根据模型计算出隐变量的期望值;反过来,如果给定隐变量的值,那么可以通过最大化似然函数来...
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster、Laird和Rubin三人于1977年所...
最大期望算法(Expectation-Maximization algorithm,EM) 最大期望算法(Expectation-Maximization algorithm,EM) 一、EM算法的广义步骤 二、先写出EM的公式 三、其收敛性的证明 四、公式推导方法1 4.1 E-M步骤公式 4.2
EM算法(Expectation-Maximization Algorithm,期望最大化算法)是一种迭代优化算法,主要用于在含有隐变量(未观测变量)或不完全数据的概率模型中,估计参数的最大似然估计(Maximum Likelihood Estimation, MLE)或最大后验概率估计(Maximum A Posteriori, MAP)。它被广泛应用于各种机器学习问题,如混合高斯模型、隐马尔可夫模型...
期望最大化(Expectation Maximization,EM)是一种迭代优化算法,主要用于估计那些具有潜在或未观测变量的统计模型的参数。它在机器学习、数据聚类和统计建模等领域有着广泛的应用。EM算法的核心思想是在存在缺失或未观测数据的情况下,通过最大化统计模型的似然函数来估计参数。该算法包含两个主要步骤:E步(Expectation step...
,则EM算法的两个步骤是: E步(Expectation):以当前参数 推断隐变量分布 ,并计算对数似然 关于 的期望: M步卡(Maximization):寻找参数最大化期望似然,即: 简要来说,EM算法使用两个步骤交替计算:第一步是期望E步,利用当前估计的参数值来计算对数似然的期望值;第二步是最大化M步,寻找能使E步产生的似然期望最大...