最大期望算法(Expectation-Maximization algorithm,EM) 最大期望算法(Expectation-Maximization algorithm,EM) 一、EM算法的广义步骤 二、先写出EM的公式 三、其收敛性的证明 四、公式推导方法1 4.1 E-M步骤公式 4.2
EM算法(Expectation-Maximization Algorithm,期望最大化算法)是一种迭代优化算法,主要用于在含有隐变量(未观测变量)或不完全数据的概率模型中,估计参数的最大似然估计(Maximum Likelihood Estimation, MLE)或最大后验概率估计(Maximum A Posteriori, MAP)。它被广泛应用于各种机器学习问题,如混合高斯模型、隐马尔可夫模型(...
Expectation Maximization(EM)算法在很多统计和机器学习的领域中被广泛应用,但是它也有一些缺点。下面我将详细介绍EM算法的缺点,并提及一些类似的算法。 收敛速度慢:EM算法的收敛速度通常较慢。这是因为EM算法的每次迭代都包括两步:E步(Expectation Step)和M步(Maximization Step)。在E步中,需要计算隐变量的后验概率,...
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题。其基本思想是首先根据己经给出的观测数据,估计出模型参数的值;然后...
1.EM算法概念 EM 算法,全称 Expectation Maximization Algorithm。期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最大似然估计或极大后验概率估计。 1.1 问题描述 我们假设学校男生和女生分别服从两种不同的正态分布,即男生 ,女生...
4、算法流程 1)初始化分布参数θ; 重复以下步骤直到收敛: E步骤:根据参数初始值或上一次迭代的模型参数来计算出隐性变量的后验概率,其实就是隐性变量的期望。作为隐藏变量的现估计值: M步骤:将似然函数最大化以获得新的参数值: 5、总结 期望最大算法(EM算法)是一种从不完全数据或有数据丢失的数据集(存在隐含...
视频如下: 机器学习-白板推导系列(十)-EM算法(Expectation Maximization)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili一、EM算法公式以及算法收敛性证明EM算法中文叫做:期望最大算法 主要解决的问题是:具有隐变量的…
,则EM算法的两个步骤是: E步(Expectation):以当前参数 推断隐变量分布 ,并计算对数似然 关于 的期望: M步卡(Maximization):寻找参数最大化期望似然,即: 简要来说,EM算法使用两个步骤交替计算:第一步是期望E步,利用当前估计的参数值来计算对数似然的期望值;第二步是最大化M步,寻找能使E步产生的似然期望最大...
接下来详述的EM(Expectation Maximization, EM)算法解决的就是这个鸡蛋困境,不管是先有鸡还是先有蛋,最终命运都会被享用。 3 EM算法 在此先将问题抽象,已知模型为p(x|θ),X=(x1,x2,…,xn),求θ。引入隐含变量Z=(z1,z2,…,zn),使得模型满足公式(6)或公式(7)的关系。由第1节的极大似然估计有,l(θ...
期望最大化(Expectation Maximization) 算法被称为机器学习十大算法之一,最初是由Ceppellini等人1950 年在讨论基因频率的估计的时候提出的。后来又被Hartley 和Baum 等人发展的更加广泛。目前引用的较多的是1977 年Dempster等人的工作。它主要用于从不完整的数据中计算最大似然估计。 这个算法是目前隐马尔科夫(HMM)、...