【源自:精通Web Analytics 2.0】需要在ES中使用聚合进行统计分析,但是聚合字段值为中文,ES的默认分词...
"skipped":0,"failed":0},"hits":{"total":{"value":100,"relation":"eq"},"max_score":null,"hits":[]},"aggregations":{"tags":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":"物理","doc_count":25},{"key":"几何","doc_count":23},{"key":"...
AI代码解释 "aggregations":{"group_by_topics":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":1,"doc_count":35},{"key":19,"doc_count":25},{"key":18,"doc_count":17},{"key":29,"doc_count":15},{"key":20,"doc_count":12},{"key":41,"doc_...
doc_count_error_upper_bound:被遗漏的 term 分桶,包含的文档,有可能的最大值 sum_other_doc_count: 处理返回结果 bucket 的 terms 以外,其他 terms 的文档总数(总数 -返回的总数) 4. Terms 聚合分析的执行流程 5. Terms 不正确的案例 6. 如何解决 Terms 不准的问题:提...
"show_term_doc_count_error":false, "order":[ { "_count":"desc" }, { "_term":"asc" } ] } } } }' 上图group_by_topics 就是我们要聚合的字段, 下面是执行该DSL语句的结果: "aggregations":{ "group_by_topics":{ "doc_count_error_upper_bound":0, ...
{ "aggregations": { "brands": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "Levi's", "doc_count": 3 } ] } } } 现在,让我们看一下其他示例,展示 kNN 查询的灵活性。 具体来说,它如何能够灵活地与其他查询结合起来。 kNN 可以是boolean查询...
其中,当doc_count_error_upper_bound大于0的时候,可能结果不准 不准原因为,数据分散在多个分片上,Coordinating Node无法获取数据全貌 解决方案1:当数据量不大时,设置Primary Shard为1,实现准确性 解决方案2:在分布式数据上,设置shard_size参数,提高精确度 ...
..."aggregations":{---聚合结果"sales_rank":{---桶名称"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[---这个JSON数组内是按照品牌聚合而成的所有桶{"key":"bmw",---品牌为bmw的桶"doc_count":1,---文档数量为1"sales":{---metrics处理结果"value":80000.0---品牌为...
"doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "M", "doc_count": 232, "average_balance": { "value": 27374.05172413793 } }, { "key": "F", "doc_count": 219, "average_balance": { ...
"doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : "小天", "doc_count" : 2, "age" : { "doc_count_error_upper_bound" : 0, "sum_other_doc_count" : 0, "buckets" : [ { "key" : 25, ...