积分号e的x次方sinx的平方dx 相关知识点: 试题来源: 解析 =e^x sinx-∫e^x cosx dx=e^x sinx-∫cosx d(e^x)=e^x sinx-[e^x cosx - ∫e^x d (cosx)]=e^x sinx-(e^x cosx ∫e^x sinx dx)=e^x sinx-e^x cosx - ∫e^x sinx dx原式I=e^x sinx-e^x cosx-I所以I=1/2*(e...
解析 求不定积分∫(e^x)sin²xdx原式=(1/2)∫(e^x)(1-cos2x)dx =(1/2)[(e^x)-∫(e^x)cos2xdx] =(1/2)[e^x-∫cos2xd(e^x)] =(1/2)e^x-(1/2)[(e^x)cos2x+2∫(e^x)sin2xdx] =(1/2)(1-cos2x)(e^x... 分析总结。 题目...
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
二十多年没碰过积分了,但是这个式子简单,感觉很好解,解题过程可能有些手生:∫exsin2xdx=exsin2x...
e的x次方乘以sinx平方的不定积分是(1/2)e^x-(1/5)(cos2x+2sin2x)(e^x)+C=[(1/2)-(1/5)(cos2x+2sin2x)]e^x+C。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。不定积分的计算小技巧:当被积函数有一部分...
不定积分的意义:如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x)。即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。如果F(x)是f(x)在区间I上...
原函数=∫e^x (1-cos2x)/2dx =0.5[e^x- ∫e^xcos2xdx]再求e^xcos2x的原函数,用分部积分法。I=∫e^xcos2xdx =e^xcos2x+∫2e^xsin2xdx =e^xcos2x+2[e^xsin2x-∫2e^xcos2xdx]=e^xcos2x+2e^xsin2x-4I 得:I=e^x(cos2x+2sin2x)/5 因此原函数=0.5[e^x-e^x(...
若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
∫e的x次幂sinx的平方dx 我来答 1个回答 #热议# 《请回答2021》瓜分百万奖金 叶雪无声 2018-12-09 知道答主 回答量:28 采纳率:50% 帮助的人:8758 我也去答题访问个人页 关注 展开全部 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 为你推荐: 特别推荐 关键时刻可以救命...