e的负x次方的导数为 -e^(-x)。 计算方法: { e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x) 本题中可以把-x看作u,即: { e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。 扩展资料: 如果函数y=f(x)在开区间内每...
e的负x次方的导数为 -e^(-x)。 计算方法: { e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x) 本题中可以把-x看作u,即: { e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)...
解析 e的负x次方的导数为 -e^(-x)。计算方法: { e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x) 本题中可以把-x看作u,即: { e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。
e的负x次方的导数为-e^(-x)。推导过程如下:我们使用指数函数的定义 e^x = 1 + x/1! + x^2/2! + x^3/3! + ……,其中 n! 表示 n 的阶乘。首先,我们将 e^(-x) 写成分式形式:e^(-x) = 1 + (-x)/1! + (-x)^2/2! + (-x)^3/3! + ……接下来,我们考虑求导数,注意到...
e的负x次方的导数为-e^(-x)。计算方法:{e^(-x)}'= e^(-x)*(-x)'=e^(-x)*(-1)= -e^(-x)本题中可以把-x看作u,即:{e^u}'= e^u*u'= e^(-x)* (-x)'= e^(-x)*(-1)= -e^(-x)也可以使用换元法计算:y=e^(-x)可以看作y=e^t和t=-x的复合,根据复合函数求导的...
e^t的导数e^t后还要对t求导 也就是说e^(-x)导数是e^(-x)*(-x)'=-e^(-x) 说白了就是层层剥皮,只要其中有一个是复合的,那就乘以复合在里面那个函数的导数,直到所有复合的导数都求完乘在一起 f'(x)=-e^(-x) f''(x)=[-e^(-x)]'=e^(-x) 把x=1代入,得f''(1)=e^(-1)=1/e...
1求下列函数的导数.;;;. 2求下列函数的导数:;;;. 312.求下列函数的导数:(1) y=(cosx)/(sinx)sinx(2) y=3^xe^x-2^x+e 4三、解答题10.求下列函数的导数:(1 y=x^2++log_3x ;(2) y=x^3⋅e^x ;coS x(3) y=(cosx)/x( y=x-sinx/2⋅cosx/2 5导数的计算e的-x次方的导数怎...
e的-x次方的导数是多少 简介 { e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x),可以把-x看作u,即:{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。复合函数求导,链式法则:若h(a)=f[g(x)],则h'(a)=f...
e的负x次方求导是一个复合函数求导的经典例子。它的导数是本身的相反数。我们记函数f(x)=e^(-x),则f'(x)=(e^(-x))'=-e^(-x)=-f(x). e的负x次方是一个复合函数,记内函数u(x)=-x,u也可以看作一个中间变量,则外函数f(u)=e^u. 复合函数的导函数等于外函数的导函数与内函数的导函数...
e^t的导数e^t后还要对t求导 也就是说e^(-x)导数是e^(-x)*(-x)'=-e^(-x) 说白了就是层层剥皮,只要其中有一个是复合的,那就乘以复合在里面那个函数的导数,直到所有复合的导数都求完乘在一起 f'(x)=-e^(-x) f''(x)=[-e^(-x)]'=e^(-x) 把x=1代入,得f''(1)=e^(-1)=1/e...