Double DQN,通过目标Q值选择的动作来选择目标Q值,从而消除Q值过高估计的问题。D3QN(Dueling Double DQN)则是结合了Dueling DQN和Double DQN的优点。 1. Dueling DQN 决斗(Dueling)DQN,网络结构如图1所示,图1中上面的网络为传统的DQN网络。图1中下面的网络则是Dueling DQN网络。Dueling DQN网络与传统的DQN网络结构的...
这么做的原因是传统的DQN通常会高估Q值得大小,两者代码差别如下: q_eval=self.eval_net(batch_state).gather(1,batch_action)q_next=self.target_net(batch_next_state).detach()ifself.double:#ddqnq_next_eval=self.eval_net(batch_next_state).detach()q_a=q_next_eval.argmax(dim=1)q_a=torch.res...
交通信号控制深度强化学习Dueling Double DQNDueling Network为了提高交叉口通行效率缓解交通拥堵,深入挖掘交通状态信息中所包含的深层次隐含特征信息,提出了一种基于Dueling Double DQN(D3QN)的单交叉口交通信号控制方法;构建了一个基于深度强化学习Double DQN(DDQN)的交通信号控制模型,对动作-价值函数的估计值和目标值迭代...
基于Dueling Double DQN的交通信号控制方法 为了提高交叉口通行效率缓解交通拥堵,深入挖掘交通状态信息中所包含的深层次隐含特征信息,提出了一种基于Dueling Double DQN(D3QN)的单交叉口交通信号控制方法;构建了... 叶宝林,陈栋,刘春元,... - 《计算机测量与控制》 被引量: 0发表: 2024年 基于选址机制与DRL的无线...
Evaluation samples from Dueling Double DQN with Prioritized Replay Buffer:Episode 50Episode 150Episode 750Reward and Q-value plotsThe first two figures show that all models learn to solve Pong with D3QN with Prio and DQN being the faster learners. The third figure shows that DQN initially learns...
tensorflow keras deep-reinforcement-learning openai-gym openai dqn dueling-dqn deeprl d3qn dqn-tensorflow lunarlander-v2 Updated Aug 11, 2021 Python kirarpit / connect4 Star 34 Code Issues Pull requests Solving board games like Connect4 using Deep Reinforcement Learning deep-learning policy-grad...
reinforcement-learning keras openai dqn gym policy-gradient a3c ddpg ddqn keras-rl a2c d3qn dueling Updated May 25, 2020 Python TheGreatMegalodon / Megalodon-s-dueling-code Star 2 Code Issues Pull requests This is my first coding experience and dueling mode, I hope you will enjoy my work...
D3QN(Dueling Double DQN)。Dueling DQN 与Double DQN 相互兼容,一起用效果很好。简单,泛用,没有使用禁忌。 在论文中使用了D3QN应该引用DuelingDQN 与 DoubleDQN的文章。 只需将DuelingDQN中的loss计算方式修改为DoubleDQN的方式即可。 # Epsilon_Greedy_Exploration# MAX_Greedy_UpdateclassDueling_DQN:def__init__...
Figure 6. The structure of the DQN model and Dueling DQN. The D3QN algorithm is established upon the foundation of the DQN algorithm, integrating concepts from both the Double DQN algorithm and the Dueling DQN algorithm to optimize the DQN model structure and optimize the objective function. 3....
This paper proposes an Improved Dueling Deep Double-Q Network Based on Prioritized Experience Replay (IPD3QN) to address the slow and unstable convergence of traditional Deep Q Network (DQN) algorithms in autonomous path planning of USV. Firstly, we use the deep double Q-Network to decouple the...