对于实现DoubledQN和Dueling DQN的agent,可以使用深度学习库(如TensorFlow或PyTorch)来构建神经网络,并通过优化算法(如梯度下降法)来更新网络参数。同时,还需要考虑经验回放机制和ε-greedy策略等技术来增加训练的稳定性和探索能力。具体实现过程会依据编程环境和任务需求而有所差异,可以参考相应的文献或代码库来进行实现。
只不过maxa ′Qω −( s ′ , a ′ ) 的计算只用到了其中的目标网络,那么我们恰好可以直接将训练 网络作为 Double DQN 算法中的第一套神经网络来选取动作,将目标网络作为第二套神经网络计算 Q 值,这便是 Double DQN 的主要思想。
深度Q网络(deep Q-network,DQN)是指基于深度学习的Q学习算法,主要结合了价值函数近似与神经网络技术,并采用目标网络和经历回放的方法进行网络的训练。在 Q学习 中,我们使用表格来存储每个状态 $s$ 下采取动作 $a$ 获得的奖励,即状态-动作值函数$Q(s,a)$。然而,这种方法在状态量巨大甚至是连续的任务中,会遇到...
Double DQN改进了DQN的参数更新部分,Prioritized DQN改进了DQN的经验回放部分,Dueling DQN则是通过优化神经网络的结构来优化算法。在许多基于视觉的感知的DRL任务中,不同的状态动作对的值函数是不同的,但是在某些状态下,值函数的大小与动作无关。因此Dueling DQN把Q值更新分开成两个部分,一个是状态v函数,一个是独立...
深度Q网络(deep Q-network,DQN):基于深度学习的Q学习算法,其结合了价值函数近似(value function approximation)与神经网络技术,并采用目标网络和经验回放等方法进行网络的训练。 状态-价值函数(state-value function):其输入为演员某一时刻的状态,输出为一个标量,即当演员在对应的状态时,预期的到过程结束时间段内所能...
DQN 算法敲开了深度强化学习的大门,但是作为先驱性的工作,其本身存在着一些问题以及一些可以改进的地方。于是,在 DQN 之后,学术界涌现出了非常多的改进算法。本章将介绍其中两个非常著名的算法:Double DQN和Dueling DQN,这两个算法的实现非常简单,只需要在 DQN 的基础上稍加修改,它们能在一定程度上改善 DQ...
Double DQN: YtDoubleDQN≡Rt+1+γQ^(St+1,argmaxaQ(St+1,a;θt),θt−) 对比原始和Double的cost曲线: Dueling DQN Theory Remember that Q-values correspondto how good it is to be at that state and taking an action at that state Q(s, a). ...
Dueling Double Deep Q-Network (Dueling DDQN) 是一种结合了两种技术的强化学习算法:Dueling网络结构和Double DQN。它旨在进一步提高 Q-Learning 的效率和稳定性,特别是在处理离散动作空间的问题时非常有效。 def train_dddqn(env, epoch_num=50): """ <<< Double DQN -> Dueling Double DQN ...
单分支网络结构(DQN和DDQN) 对偶网络结构(Dueling DQN) 在DQN算法的网络结构中,输入为一张或多张照片,利用卷积网络提取图像特征,之后经过全连接层输出每个动作的动作价值;在Dueling DQN算法的网络结构中,输入同样为一张或多张照片,然后利用卷积网络提取图像特征获取特征向量,输出时会经过两个全连接层分支,分别对应状态...
1、Dueling Network 什么是Dueling Deep Q Network呢?看下面的图片 上面是我们传统的DQN,下面是我们的Dueling DQN。在原始的DQN中,神经网络直接输出的是每种动作的 Q值, 而 Dueling DQN 每个动作的 Q值 是有下面的公式确定的: 它分成了这个 state 的值, 加上每个动作在这个 state 上的 advantage。我们通过下面...