DPM-Solver has been used in: DreamStudio and StableBoost (thanks for the implementations by Katherine Crowson's k-diffusion repo). Stable-Diffusion-WebUI, which supports both DPM-Solver and DPM-Solver++. DPM-Solver++2M is the fastest solver currently. Also many Thanks to Katherine Crowson's...
Code Pull requests Actions Projects Security Insights zyzhang-Vicky/dpm-solver projects Search all projects Search results No open projects Footer © 2025 GitHub, Inc. Footer navigation Terms Privacy Security Status Docs Contact Manage cookies Do not share my personal information ...
例如,下图展示了不同采样算法在 Stable-Diffusion 上随着步数变化的效果,可见 DPM-Solver 在 10 到 15 步就可以获得非常高质量的采样: 使用DPM-Solver DPM-Solver 的使用非常简单,既可以基于作者提供的官方代码,也可以使用主流的 Diffusers 库。例如,基于作者提供的官方代码(https://github.com/LuChengTHU/dpm-sol...
Sana的性能得益于多项技术创新:深度压缩自编码器实现32倍压缩比,线性DiT用线性注意力机制显著降低复杂度,Gemma文本编码器增强文本理解,Flow-DPM-Solver减少推理步骤提升生成效率。模型已开源,支持ComfyUI工作流及LoRA个性化训练工具,适用于端侧设备和高效生成需求。Sana在速度和性能上超越传统扩散模型,是生成高质量图像的...
https://github.com/LuChengTHU/dpm-solver 官方代码对 4 种扩散模型都进行了支持: 并且同时支持 unconditional sampling、classifier guidance 和 classifier-free guidance: 而基于 Diffusers 库的 DPM-Solver 同样很简单,只需要定义 scheduler 即可: 此外,作者团队还提供了一个在线 Demo: ...
例如,下图展示了不同采样算法在 Stable-Diffusion 上随着步数变化的效果,可见 DPM-Solver 在 10 到 15 步就可以获得非常高质量的采样: 使用DPM-Solver DPM-Solver 的使用非常简单,既可以基于作者提供的官方代码,也可以使用主流的 Diffusers 库。例如,基于作者提供的官方代码(https://github.com/LuChengTHU/dpm-...
Official code for "DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics" (NeurIPS 2023) - History for codebases/edm/sample.sh - thu-ml/DPM-Solver-v3
GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
https://github.com/LuChengTHU/dpm-solver 官方代码对 4 种扩散模型都进行了支持: 并且同时支持 unconditional sampling、classifier guidance 和 classifier-free guidance: 而基于 Diffusers 库的 DPM-Solver 同样很简单,只需要定义 scheduler 即可: 此外,作者团队还提供了一个在线 Demo: ...
config.algorithm_type = 'sde-dpmsolver++' model.scheduler= SdeScheduler if (karrasSigmas) : model.scheduler.config.use_karras_sigmas=True return self.offload(model, device) class Load_Stage_II(Load_Encoder): RETURN_TYPES = ("S2_MODEL",) @classmethod def INPUT_TYPES(cls): models = list(...