在Python 中,您可以使用torch、tensorflow或其他相关库来检查 CUDA 的可用性。以下是使用 PyTorch 的示例代码: importtorchiftorch.cuda.is_available():device=torch.device("cuda")print("CUDA is available. Device Name: ",torch.cuda.get_device_name(device))else:print("CUDA is not available.") 1. 2...
当我仅使用2080Ti gpu进入相同的docker容器时,使用相同的python脚本,我得到以下错误: RuntimeError: CUDA error: no kernel image is availablefor execution on the device 此错误与setup.py中安装的某个cpp模块有关。然后,我尝试将docker容器提交到2080Ti特定的docker镜像,并将10 浏览27提问于2021-09-09得票数 ...
“FROM nvcr.io/nvidia/l4t-ml:r35.2.1-py3” This is my base image in docker. After this i am installing certain libraries using a requirement.txt[easyocr,opencv-python-headless,flask etc]. Once the docker started running …
This topic was automatically closed 14 days after the last reply. New replies are no longer allowed.
再去看看是不是torch版本和cuda版本不匹配,网上搜了一下是pytorch1.3.0支持cuda10.1,当前安装的是1.3.1,于是紧接着重新建了一个虚拟环境,安装torch1.3.0,运行实验,报错:GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation.啊啊啊气死我我了!说当前cuda算力不...
安装好nvidia-docker,nvidia-driver,cuda,cudnn, 以及pytorch_cuda版后在docker中输入torch.cuda.is_available(),返回False 解决方法: sudo docker run --gpus all -it [-e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e NVIDIA_VISIBLE_DEVICES=all] 需要加入:-e NVIDIA_DRIVER_CAPABILITIES=compute,utility -e...
这里注意,输入accept之后只选择cuda tookit,其他driver \文档\ sample等都不要安装,即把选项之前的X按enter去掉就行,最后选择install等待安装完成就行。 安装成功之后设置环境变量 vi ~/.bashrc# 文档最后输入下面两行exportPATH=/usr/local/cuda/bin:$PATHexportLD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRAR...
docker拉取ultralytics/yolov3最新版,调用显卡时显示CUDA error: no kernel image is available for execution on the device错误,一般是因为显卡算力、cuda版本、pytorch版本不兼容导致的。 我用的是rtx3090,算力8.6 nvcc --version命令查询cuda版本为Build cuda_11.4 ...
conda activate llm python -c "import torch;print(torch.cuda.is_available())" 若显示True,则表示能够正常加载GPU。 2.2 第二种:拉取普通的ubuntu镜像 这种方式的话就不预装cuda的,直接在安装torch的时候制定cuda版本即可安装torch和cuda。 2.2.1 确定cuda和torch版本 与2.1.1类似确定自己的cuda和torch版本 但...
/usr/local/nvidiadoesn't exist but is what is referenced in lib path /usr/local/cuda/lib64/lubcudnn.*doesn't exist. I thought the devel cudnn image was supposed to have all this installed ? Am I missing something obvious? KasperSkytte, yun-kwak, rasakereh, binarysta, thomasmichaelkane...