优势: Transformer模型擅长处理长距离依赖关系,尤其在自然语言处理(NLP)任务中,如翻译、文本生成和问答系统等。它通过自注意力机制,可以有效地捕捉句子中任意两个词之间的关系,而不会像传统RNN那样受到序列长度的限制。 例子: 在翻译任务中,Transformer能够同时关注源语言句子中多个相关单词,提升翻译质量。 2.并行化处理...
在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间段直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!
由于Transformer中既不存在RNN,也不同于CNN,句子里的所有词都被同等的看待,所以词之间就没有了先后关系。换句话说,很可能会带上和词袋模型相同的不足。为了解决这个问题,Transformer提出了Positional Encoding的方案,就是给每个输入的词向量叠加一个固定的向量来表示它的位置。文中使用的Positional Encoding如下: 其中po...
对了适应这种需求,就出现了题主所说的另一种神经网络结构——循环神经网络RNN。 在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻...
Add & Norm是一个残差网络,将一层的输入与其标准化后的输出进行相加即可。Transformer中每一个Self Attention层与FFN层后面都会连一个Add & Norm层。 Positional Encoding由于Transformer中既不存在RNN,也不同于CNN,句子里的所有词都被同等的看待,所以词之间就没有了先后关系。换句话说,很可能会带上和词袋模型相同...
在神经网络原理方面,CNN、RNN、DNN和SNN都有各自的特点和应用场景。其中,CNN主要用于图像识别和处理;RNN主要用于自然语言处理和序列数据处理;DNN主要用于语音识别、计算机视觉和推荐系统等;SNN则更加接近人脑神经元工作方式,适用于神经科学、机器人学和能源管理等领域。
神经网络是机器学习领域的一种重要技术,其中卷积神经网络(CNN)、循环神经网络(RNN)和深度神经网络(DNN)是三种常见的类型。接下来,我们来详细了解一下这三种神经网络的特点和应用场景。 CNN:图像处理的利器 📸CNN主要用于处理二维图像数据,其核心在于卷积操作,能够有效地捕捉图像的局部特征。CNN的基本结构包括卷积层、...
当然,「撞脸」可不是娱乐圈的特有的,在AI界也有一些“长相相似”专业名词,让初学者傻傻分不清,比如我们今晚要科普的「相似三连」DNN、RNN、CNN。 这3个名词其实是第三代神经网络里运用非常多3大算法:DNN(深度神经网络)、RNN(递归神经网络)、CNN...
当然,「撞脸」可不是娱乐圈的特有的,在AI界也有一些“长相相似”专业名词,让初学者傻傻分不清,比如我们今晚要科普的「相似三连」DNN、RNN、CNN。 这3个名词其实是第三代神经网络里运用非常多3大算法:DNN(深度神经网络)、RNN(递归神经网络)、CNN(卷积神经网络)。
是一个残差网络,将一层的输入与其标准化后的输出进行相加即可。Transformer中每一个Self Attention层与FFN层后面都会连一个Add & Norm层。 Positional Encoding 由于Transformer中既不存在RNN,也不同于CNN,句子里的所有词都被同等的看待,所以词之间...