不相交集(disjoint set)是一种数据结构,又称为并查集(union-find set),或称为联合-查找数据结构或合并查找数据结构,该数据结构主要是使用联合-查找算法(union-find algorithm)。不相交集是一种很有用的数据结构,算法简单而高效,不相交集的应用主要体现在图(grap
个人理解带权并查集就是多个并查集, 然后一个set所代表的的关系不仅一种, 所以对每个元素要用多重表示,在这个题目里 就是+i*n来区分每个元素和另一些元素的不同关系 */ #include<iostream> #include<string> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> usingnamespacestd; const...
A good choice of data structure can reduce the execution time of an algorithm and Union-Find is a data structure that falls in that category. Let’s say, you have a set of N elements which are partitioned into further subsets, and you have to keep track of connectivity of each ...
并查集(Disjoint Set)详解+例题,并:合并查:查询集:集合1.初始化:把每个点所在集合初始化为其自身;2、合并:将两个元素所在的集合合并为个集合。3、查找:查找元素所在的集合即根节点;深度不要太大unionfind...
We develop and analyze concurrent algorithms for the disjoint set union (union-find) problem in the shared memory, asynchronous multiprocessor model of computation, with CAS (compare and swap) or DCAS (double compare and swap) as the synchronization primitive. We give a deterministic bounded wait...
classDisjointSet:def__init__(self,size):self.parent=[iforiinrange(size)]self.rank=[0]*sizedeffind(self,x):ifself.parent[x]!=x:self.parent[x]=self.find(self.parent[x])# 路径压缩returnself.parent[x]defunion(self,x,y):root_x=self.find(x)root_y=self.find(y)ifroot_x!=root_y...
Disjoint Set,不相交集,也叫并查集 Union/Find算法: Find:它返回包含给定元素的集合。 Union:合并两个集合。 用数组来模拟树。 初始化时,数组元素为0。正数的表示父亲是谁,如图: Union优化:每个根的数组元素包含它的树的高度的负值,按树的高度合并,这样任何节点的深度均不会超过 logN。
#include <cstdio> #include <stdlib.h> #define VERTICES 6 /* * Disjoint set 并查集 * 难点在于实现union过程 */ void initialise(int parent[], int rank[]) { int i; for (i = 0; i < VERTICES; i++) { parent[i] = -1; rank[i] = 0; } } int find_root(int x, int parent[]...
void printSets(vector<int> const &universe, DisjointSet &ds) { for (int i: universe) { cout << ds.Find(i) << " "; } cout << endl; } // Disjoint–Set data structure (Union–Find algorithm) int main() { // universe of items vector<int> universe = { 1, 2, 3, 4, 5 }...
This paper presents a linear-time algorithm for the special case of the disjoint set union problem in which the structure of the unions (defined by a “union tree”) is known in advance. The algorithm executes an intermixed sequence of m union and find operations on n elements in O(m+n...