Dijkstra algorithm (DA) is one of the most farmous algorithm find the shortest path in graph which doesn't have negative edge. How does this DA work: First we start at vertex 1 and suppose vertex 1 is root of the path.Let call dis[i] is the shortes distance from 1 to i ,...
Thanks in Advance and Merry Christmas! Here comes the hack. Since you are not checking (and breaking) if the visited state has a different min distance, come third wave of edges from 50000 to [50001: 100000]you will end up adding 50000 edges 49998 times. Your algorithm does not fail but...
得出每个点到s与t的最短值 遍历计算每两个没建立联系的边建立联系后,s与t的距离,并与初始时距离比较 若不变则记录(s与t的值必定为新建经由新建这条边的数值或原始值中最小一个) #include<stdio.h>#include<algorithm>#include<queue>#include<bitset>#include<memory.h>#defineMS 1010#defineEND 0x3f3f3f...
思想大概如此,具体实现见代码 #include<iostream>#include<cstdio>#include<vector>#include<queue>#include#include<algorithm>#include<cstring>#include<string>#include<cmath>#include<set>#include<functional>#include<climits>#include<cstdlib>#include<climits>#definemp make_pair#definepb push_back#definefi ...
h> #include <algorithm> #include <math.h> #include <queue> #include <stdio.h> #include <vector> using namespace std; const long long int INF=(long long int )1<<60; #define MAX 100000 vector< pair<int,int> > a[MAX+5]; struct Node { int pos; int value; Node(){}; Node(...
h> #include <algorithm> using namespace std; //#define LOCAL const int maxn = 55; int n,m,s,e, cnt,head[maxn],ans[10000000], top; // 这里ans必须开大~ bool v[maxn]; struct Arc { int from,to,nxt,len; }g[maxn*maxn]; void addarc(int from,int to, int len) { g[cnt]...
#include<algorithm> //#define gc() getchar() #defineMAXIN 300000 #definegc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++) #definemp std::make_pair #definepr std::pair<LL,int> #definemod 1000000007 ...
5 #include<algorithm> 6 #include<cmath> 7 #include<queue> 8 #include<vector> 9 using namespacestd; 10 const int N=1e3+10; 11 const int inf=0x3f3f3f3f; 12 inta[N][N]; 13 charss[N][N]; 14 int n; //n个点1~n m 条边 起点 s ...
SPFA算法:SPFA(Shortest Path Faster Algorithm);上面描述的Bellman-Ford算法,算法时间复杂度比较高;Bellman-Ford算法需要递推n次,每次递推需要扫描所有的边;然而每次松弛操作并不需要对所有的边松弛,只需要与当前找到最短路的点相连的边进行松弛;所以使用队列,每次将距离更新且不在队列中的点入队;每次从队列中取出一...
#include<algorithm>#include<queue>#include#include<vector>#include<set>#include<string>#include<cmath>#include<cstring>#define ll long long#define pb push_back#define pm make_pairusing namespace std;const int MAX = 2e5 + 5;char s[MAX],t[MAX];int main(){ cin>>(s+1); cin>>(t+1...