大模型面试-DeepSpeed Zero Stage 3 到底是什么并行?数据并行还是模型并行? 大模型训练通常会用到: 1、数据并行(Data Parallelism) 2、模型并行:包括张量并行(Tensor Parallelism)和流水线并行(Pipeline Parallelism) DeepSpeed Zero Stage 本质上是一种“节… xihuichen 漫谈生成模型系列[1]: VAE basic...发表于我...
创造多个进程,每个进程运行在一张 GPU 上,在deepspeed_config中,如果我们不显示的指定 zero-stage,将...
我发现现在没有对于DeepSpeed的原理比较通俗易懂的说明。 参考沐神的讲解,做了两张图,希望能帮助大家理解。 Zero 1/2/3 为了算W需要从其他gpu中copy剩余的W,然后计算出对应的梯度; 2. 对于不维护的梯度,将它发送给对应的gpu,然后就可以舍弃; 3. 使用计算出来的梯度来更新Adam的两个状态值momentum和variance; ...
ZeRO(Zero Redundancy Optimizer)是一种去除冗余的分布式数据并行(Data Parallel)方案,分为Stage 1, Stage 2, Stage 3,而Deepspeed就是论文中ZeRO方法的Microsoft官方的工程实现。 ZeRO-Offload为解决由于ZeRO而增加通信数据量的问题,提出将GPU转移到CPU ZeRO-Infinity同样是进行offload,ZeRO-Offload更侧重单卡场景,而ZeR...
deepspeed test_zero.py --zero 3 Also - add CPU offloading Sorry, something went wrong. Copy link aced125commentedApr 17, 2021 Actually - I seem to be getting a different error (on A100), when running the above: RuntimeError: p.type().is_cuda() INTERNAL ASSERT FAILED at "/home/ubunt...
deepspeed.runtime.zero.stage_1_and_2.DeepSpeedZeroOptimizer.average_tensor only sets reduction stream waiting for default stream. This is ok in cases where the computation time is longer than the c...
1. 用过哪些参数高效微调方法?讲一下LoRA。为什么LoRA模块可以用SVD近似? 2. llm微调经历。 3. 增量预训练和预训练的区别? 4. deepspeed的ZeRO2是什么? 5. rlhf对齐经历(此处无,但讲了一个rl项目)。 6. temperature的作用?在对比学习中发挥什么作用?
As ZeRO stands for Zero Redundancy Optimizer, it's easy to see that it lives up to its name.The FutureBesides the anticipated upcoming support for model params sharding in DeepSpeed, it already released new features that we haven't explored yet. These include DeepSpeed Sparse Attentio...
subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "//DeepSpeed/DeepSpeedExamples/applications/DeepSpeed-Chat/training/step1_supervised_finetuning/...
通过上述的伪代码,我们已经大致知道了 DeepSpeedZeroOptimizer 是如何对每一个GPU的优化器分配参数的(了解到这种程度,已经可以出去吹牛了)。同时。我们也看到上述的代码有如下的几个优点: 1. 通过使用了 flatten 的技巧,让优化器去维护一个1D 的模型参数矩阵,使得对GPU 的空间的分配更加合理 ...