ZeRO(Zero Redundancy Optimizer)是一种去除冗余的分布式数据并行(Data Parallel)方案,分为Stage 1, Stage 2, Stage 3,而Deepspeed就是论文中ZeRO方法的Microsoft官方的工程实现。 ZeRO-Offload为解决由于ZeRO而增加通信数据量的问题,提出将GPU转移到CPU ZeRO-Infinity同样是进行offload,ZeRO-Offload更侧重单卡场景,而ZeR...
5、https://arxiv.org/pdf/1910.02054 ZeRO: Memory Optimizations Toward Training Trillion Parameter Models 6、https://www.bilibili.com/video/BV1mm42137X8/?spm_id_from=333.788.recommend_more_video.0&vd_source=241a5bcb1c13e6828e519dd1f78f35b2 DeepSpeed ZeRO技术 7、https://zh.d2l.ai/chapter_...
要为DeepSpeed模型启用ZeRO优化,我们只需要将zero_optimization键添加到DeepSpeed JSON配置中。有关zero_optimization键的配置的完整描述,请参见此处(https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training)。 训练一个1.5B参数的GPT2模型 我们通过展示ZeROStage 1的优点来演示它使得在八个...
DeepSpeed 通过先进的 ZeRO 优化器有效地训练非常大的模型。在2020年2月,我们在 DeepSpeed 中发布了 ZeRO 的一部分优化,该优化执行优化器状态切分。我们将其称为 ZeRO-1。在2020年5月,我们在 DeepSpeed 中扩展了 ZeRO-1,包括来自 ZeRO 的其它优化,包括梯度和激活切分,以及连续内存优化。我们将此版本称为 ZeRO-...
ZeRO Stage 1: 划分optimizer states。优化器参数被划分到多个memory上,每个momoey上的进程只负责更新它自己那部分参数。ZeRO Stage 2: 划分gradient。每个memory,只保留它分配到的optimizer state所对应的梯度。这很合理,因为梯度和optimizer是紧密联系在一起的。只知道梯度,不知道optimizer state,是没有办法优化模型参...
Deepspeed,则是用了Zero零冗余优化的方法进一步压缩训练时显存的大小,以支持更大规模的模型训练。 2. 必要知识补充 2.1 模型是怎么训练的 我们想了解模型训练时分布式是如何进行优化的,那么知道模型是如何训练的就非常重要。我们以目前最广泛...
ZeRO的三个阶段及其优势 ZeRO具有三个主要的优化阶段(如图1所示),分别对应于优化器状态,梯度和参数的划分。累计启用时: 1. 优化器状态分区(Pos) -减少了4倍的内存,通信容量与数据并行性相同。 2. 增加梯度分区(Pos+g) - 8x内存减少,通信容量与数据并行性相同。
1. ZeRO++ 加速大型模型预训练和微调 每个 GPU 上 batch size 较小时:无论是在数千个 GPU 上预训练大型模型,还是在数百个甚至数十个 GPU 上对其进行微调,当每个 GPU 的 batch size 较小时,ZeRO++ 提供比 ZeRO 高 2.2 倍的吞吐量,直接减少训练时间和成本。低带宽计算集群: ZeRO++ 使低带宽集群能够...
ZeRO-1:分割Optimizer States ZeRO-2:分割Optimizer States与Gradients ZeRO-3:分割Optimizer States、Gradients与Parameters ZeRO-Infinity是ZeRO-3的拓展。允许通过使用 NVMe 固态硬盘扩展 GPU 和 CPU 内存来训练大型模型。ZeRO-Infinity 需要启用 ZeRO-3。