ZeRO(Zero Redundancy Optimizer)是为了克服上述数据并行方法的局限性而提出的,尤其是为了处理超大规模模型的训练,它通过优化显存使用和通信开销来提高训练效率。ZeRO 是 DeepSpeed 提出的,并且与数据并行和模型并行兼容,允许训练规模达到数万亿参数。通过将模型的状态(参数、梯度、优化器状态)在多个 GPU 之间分布式存储,而...
deepspeed使用踩坑 deepspeed为模型训练加速工具,其和transformers深度结合 https://huggingface.co/docs/transformers/main_classes/deepspeed简单介绍Deepspeed分zero1,zero2,zero3和infinity版本 ●Speed-wi…
ZeRO(Zero Redundancy Optimizer)是一种去除冗余的分布式数据并行(Data Parallel)方案,分为Stage 1, Stage 2, Stage 3,而Deepspeed就是论文中ZeRO方法的Microsoft官方的工程实现。 ZeRO-Offload为解决由于ZeRO而增加通信数据量的问题,提出将GPU转移到CPU ZeRO-Infinity同样是进行offload,ZeRO-Offload更侧重单卡场景,而ZeR...
deepspeed --include localhost:4,5,6,7 --master_port 14267 ../src/train_bash.py --deepspeed ../deepspeed/zero3.json --stage sft --do_predict --adapter_name_or_path /root/paddlejob/workspace/env_run/luhao/qwen/1_3_sft_nosafe --model_name_or_path /home/luhao/model/modelscope/hub/...
通过与 DeepSpeed-Chat 的集成,与原始 ZeRO 相比,ZeRO++ 可以将 RLHF 训练的生成阶段效率提高多达 2 倍,强化学习训练阶段效率提高多达 1.3 倍。接下来,我们将更深入地解释 ZeRO 及其通信开销,并讨论 ZeRO++ 中为解决这些问题而进行的关键优化。然后我们将展示 ZeRO++ 对不同模型大小、批量大小和带宽限制的...
3、上述的DP和DDP,通过分布式增加了算力,但缺陷还是很明显的:并未节约显存!所以由此产生了ZeRO技术! (1)预训练时,optimizer占用8倍参数量的显存空间,是最耗费显存的,所以肯定先从这种“大户”下手啦!前面的DP和DDP,每块显卡都保存了完整的optimizer,互相都有冗余,能不能消除这个冗余了?比如集群有3块显卡,每块显卡...
DeepSpeed 使用 GPT-2 进行评估 Zero概述 训练环境 开启Zero优化 训练一个1.5B参数的GPT2模型 训练一个10b的GPT-2模型 使用ZeRO-Infinity训练万亿级别的模型 使用ZeRO-Infinity将计算转移到CPU和NVMe 分配大规模Megatron-LM模型 以内存为中心的分块优化
运行未修改的Megatron-LM GPT2模型 开启DeepSpeed DeepSpeed 使用 GPT-2 进行评估 Zero概述 训练环境 开启Zero优化 训练一个1.5B参数的GPT2模型 训练一个10b的GPT-2模型 使用ZeRO-Infinity训练万亿级别的模型 使用ZeRO-Infinity将计算转移到CPU和NVMe 分配大规模Megatron-LM模型 以内存为中心的分块优化 提取权重 ZeRO...
Deepspeed,则是用了Zero零冗余优化的方法进一步压缩训练时显存的大小,以支持更大规模的模型训练。 2. 必要知识补充 2.1 模型是怎么训练的 我们想了解模型训练时分布式是如何进行优化的,那么知道模型是如何训练的就非常重要。我们以目前最广泛...