Structural-RNN: Deep Learning on Spatio- Temporal Graphs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.A. Jain et al., "Structural-RNN: Deep Learning on Spatio-Temporal Graphs," in CVPR, 2016, pp. 5308-17....
时空图中的内容分为两种:一是节点(node),包含人和食物,微波炉。二是连接关系(edge),分为temporal edge和spatial-temporal edge。temporal edge指的是t时刻和t+1时刻的连接,spatial-temporal edge指的是同一时刻节点之间的连接关系(不明白temporal体现在哪里) 将s-t图转换成对应的RNN混合体有两个问题: 1) 要尽可...
CVPR 2016 Structural-RNN: Deep Learning on Spatio-Temporal Graphs 论文解读,程序员大本营,技术文章内容聚合第一站。
Spatial: CNN Temporal: RNN CLTFP (2016, Wu&Tan, LSTM+1D-CNN) Convolutional LSTM (2015, Shi) --only grid structures, RNN is difficult to train Spatial: graph, Temporal: Conv Spatio-temporal convolutional networks 2 Preliminary 2.1 Traffic Prediction on Road Graphs Traffic forecast: v^t+1,…...
In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the...
Classical datamining techniques often perform poorly when applied tospatio-temporal datasets because of many reasons. First, STdata are usually embedded in continuous space, whereasclassical datasets such as transactions and graphs are oftendiscrete. Second, patterns of ST data usually present both...
Self-Supervised Learning via Conditional Motion Propagation [cvpr19] [pytorch] A Neural Temporal Model for Human Motion Prediction [cvpr19] [tensorflow] Learning Trajectory Dependencies for Human Motion Prediction [iccv19] [pytorch] Structural-RNN: Deep Learning on Spatio-Temporal Graphs [cvpr15] [te...
We study the problem of stochastic optimization for deep learning in the parallel computing environment under communication constraints. A new algorithm is... S Zhang,A Choromanska,Y Lecun - MIT Press 被引量: 202发表: 2014年 Structural-RNN: Deep Learning on Spatio-Temporal Graphs Deep Recurrent...
Structural-rnn: Deep learning on spatio-temporal graphs.Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena.CVPR 2016. paper Deep multi-view spatial-temporal network for taxi.Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, Zhenhui Li...
Jain, A.; Zamir, A.R.; Savarese, S.; Saxena, A. Structural-RNN: Deep Learning on Spatio-Temporal Graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] ...