理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,...
而Transformer的编码器就类似于这种功能,Transformer的编码器就是把人类能够识别的数据,转换成大模型能够识别的数据;而解码器就是把大模型能够识别的数据转换为人类能够识别的内容。 但这个转换过程并不只是简单的格式变换,而是要经过多重数据处理;而这才是Transformer编码器的核心所在。 Transformer的Encoder-Decoder编码器...
输入处理:Decoder的输入包括两部分:一是Encoder的输出(即整个输入序列的编码),二是Decoder自身的输入(通常是目标序列的已生成部分,在训练初期可以是目标序列的左移版本,即包含起始符和已知的目标词)。 掩码自注意力(Masked Self-Attention):与Encoder的自注意力不同,Decoder的自注意力机制需要加上一个掩码(Mask),以...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制:
Attention - 注意力机制 seq2seq是 Sequence to Sequence 的简写,seq2seq模型的核心就是编码器(Encoder)和解码器(Decoder)组成的 通过在seq2seq结构中加入Attention机制,是seq2seq的性能大大提升,先在seq2seq被广泛
Transformer是在2017年由谷歌提出的,当时应用在机器翻译场景。从结构上来看,它分为Encoder 和Decoder两个...
一、Encoder:输入序列的编码器 Encoder是Transformer架构中的一部分,主要负责将输入序列(如句子中的单词)转换成内部表示(或称为隐藏表示)。这个过程始于将每个输入单词转换为词嵌入向量,这些向量捕捉了单词的语义信息。然后,这些词嵌入向量被送入一个由多层自注意力机制和全连接层组成的神经网络结构,每一层都会编码输入...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。
Transformer 中 Encoder 由 6 个相同的层组成,每个层包含 2 个部分: Multi-Head Self-Attention Position-Wise Feed-Forward Network (全连接层) Decoder 也是由 6 个相同的层组成,每个层包含 3 个部分: Multi-Head Self-Attention Multi-Head Context-Attention ...